База научных работ, курсовых, рефератов! Lcbclan.ru Курсовые, рефераты, скачать реферат, лекции, дипломные работы

Расчет тонкопленочного конденсатора

Расчет тонкопленочного конденсатора

ПРОЕКТИРОВАНИЕ ПЛЕНОЧНЫХ КОНДЕНСАТОРОВ

В некоторых типах гибридных ИМС наряду с резисторами наиболее распространенными пассивными элементами являются пленочные конденсаторы, которые во многом определяют схемотехнические и эксплуатационные характеристики ИМС. Так, качество и надежность большинства линейных гибридных ИМС в значительной мере зависят от качества и надежности тонкопленочных конденсаторов, что определяется их конструкцией и технологией изготовления.

Конструктивно-технологические особенности и основные параметры. В гибридных ИМС применяют тонкопленочные и толстопленочные конденсаторы с простой прямоугольной (квадратной) и сложной формами (рис. 1). Пленочный конденсатор представляет собой многослойную структуру, нанесенную на диэлектрическую подложку (рис. 1, а). Для ее получения на подложку 1 последовательно наносят три слоя: проводящий 2, выполняющий роль нижней обкладки, слой диэлектрика 3 и проводящий слой 4, выполняющий роль верхней обкладки конденсатора.

[pic] [pic]

в)
Рис. 1. Конструкции пленочных конденсаторов с обкладками прямоугольной формы (а) в виде пересекающихся проводников (б) и «гребенки» (в)
Пленочные конденсаторы характеризуются совокупностью следующих параметров: номинальным значением емкости С; допуском на емкость ±6С; рабочим напряжением Up; добротностью Q или тангенсом угла потерь ; сопротивлением утечки , коэффициентом остаточной поляризации , температурным коэффициентом емкости ТКС; коэффициентом старения ; диапазоном рабочих частот ; интервалом рабочих температур ; надежностью и др.
Конкретные значения этих параметров зависят от выбора используемых материалов для диэлектрика и обкладок, технологического способа формирования самой структуры и конструкции. Конструкция конденсатора должна обеспечивать воспроизводимость параметров при минимальных габаритах в процессе изготовления и совместимость изготовления с другими элементами.

Конструкция (рис. 1, а), в которой контур верхней обкладки вписывается в контур нижней обкладки, предназначена для реализации конденсаторов повышенной емкости (сотни - тысячи пикофарад). Ее особенностью является то, что несовмещение контуров обкладок не сказывается на воспроизведении емкости (для устранения погрешности из-за площади вывода верхней обкладки предусмотрены компенсаторы 5), а распространение диэлектрика за контуры обеих обкладок гарантирует надежную изоляцию обкладок при их предельном несовмещении.

Для конденсаторов небольшой емкости (десятки пикофарад) целесообразна конструкция (рис. 1, б) в виде пересекающихся проводников одинаковой ширины, разделенных слоем диэлектрика. Емкость конденсатора данной конструкции нечувствительна к смещению обкладок из-за неточности их совмещения.

Для реализации высокочастотных конденсаторов применяют гребенчатую конструкцию (рис. 1, в), в которой обкладки имеют форму гребенчатых проводников, а диэлектрик является составным типа «подложка — воздух» или
«подложка — диэлектрическое покрытие».

Значение емкости пленочного конденсатора определяют по известной формуле

где — относительная диэлектрическая проницаемость диэлектрика;
S—площадь перекрытия диэлектрика обкладками; d— толщина диэлектрика.

Для конденсаторов многослойной структуры, состоящей из последовательно нанесенных диэлектрических и проводящих слоев, емкость

где п — количество диэлектрических слоев.

Подобно материалу резистивной пленки слой диэлектрика, параметры и d которого определяют емкость конденсатора, с точки зрения технологичности, воспроизводимости и стабильности свойств характеризуется оптимальным отношением для каждого материала и способа его нанесения. Поэтому емкость С конденсатора удобно выражать через удельную емкость

где Co=0,0885 /d—постоянная величина для каждого материала.

Как следует из ( ), для изготовления конденсаторов с малой занимаемой площадью необходимо применять материалы, характеризующиеся максимальным значением Со, т. е. материалы с максимальной диэлектрической проницаемостью и минимальной толщиной d. Однако минимальная толщина d диэлектрического слоя даже в случае выполнения требований по технологичности и воспроизводимости ограничена значением рабочего напряжения на конденсаторе.

Известно, что электрическая прочность конденсатора определяется выражением

где — напряженность электрического пробоя диэлектрика (постоянная величина для каждого материала).

Следовательно, для обеспечения нормальной работы конденсатора необходимо, чтобы

, что возможно при соответствующем выборе толщины диэлектрика.
Минимальную толщину диэлектрика определяют из выражения ( ), если

:

где —коэффициент запаса, принимаемый равным 2—3 для большинства структур пленочных конденсаторов.

Поэтому рабочее напряжение конденсатора обеспечивается выбором соответствующего материала диэлектрика с определенным значением и необходимой толщиной диэлектрического слоя d.

Допуск, на номинальную емкость С определяется относительным изменением емкости С конденсатора, обусловленным производственными погрешностями и дестабилизирующими факторами из-за изменения температуры и старения материалов. В процессе изготовления пленочного конденсатора возможен разброс его удельной емкости Со и геометрических размеров обкладок. Из выражений ( ) и ( ) следует, что максимальное значение технологической погрешности емкости

где — абсолютные погрешности воспроизведения диэлектрической проницаемости, толщины диэлектрика и площади конденсатора соответственно.

Поскольку воспроизведение удельной емкости Со и площади S конденсатора достигается взаимно независимыми технологическими операциями, математическое ожидание относительного отклонения емкости и относительное среднеквадратическое отклонение емкости определяются выражениями

где — относительные и абсолютные среднеквадратические отклонения удельной емкости и площади.

Погрешность воспроизведения удельной емкости Со зависит от технологических факторов нанесения слоя диэлектрика, а погрешность воспроизведения площади S кроме технологических факторов зависит от конструкции конденсатора и формы обкладок. В общем случае

где — относительные среднеквадратические отклонения линейных размеров А и В, определяющих площадь S=AB; — коэффициент корреляционной связи между отклонениями размеров А и В.

Когда размеры А и В верхней обкладки конденсатора, площадь которой определяет его емкость, формируются в процессе одной технологической операции (рис. 1 а),

Для конструкции рис. 1 б емкость конденсатора определяется площадью перекрытия диэлектрика обеими обкладками, линейные размеры которых формируются независимо,

Следует отметить, что существенно зависит также от формы верхней обкладки конденсатора (рис. 1 , а). При

где —коэффициент формы обкладок (при квадратной форме обкладок, когда А =В и

, значение минимально).

При этом значение , вычисляемое по ( ), не должно превышать максимально допустимого, т.е.

Отсюда следует, что при выбранном из топологических соображений значении площадь верхней обкладки

Выражение ( ) может быть использовано для определения максимального значения исходя из обеспечения требуемой точности конденсатора:

В данном случае при заданной технологии значение определяется из формулы для полной относительной погрешности емкости ус конденсатора:


Здесь —относительная погрешность удельной емкости в условиях конкретного производства (зависит от материала и погрешности воспроизведения толщины диэлектрика);

— относительная погрешность площади (зависит от формы, площади и погрешности линейных размеров обкладок);

—относительная температурная погрешность (зависит в основном от
ТКС материала диэлектрика); —относительная погрешность, обусловленная старением пленок конденсатора (зависит от материала и метода защиты).

Добротность Q пленочного конденсатора обусловлена потерями энергии в конденсаторе:

где — тангенс угла диэлектрических потерь в конденсаторе, диэлектрике, обкладках и выводах соответственно. Потери в диэлектрике обусловлены свойствами материала диэлектрика на определенной частоте f и определяются суммой миграционных и дипольно-релаксационных потерь:

где — удельное сопротивление пленки диэлектрика; — время релаксации; — значения относительной диэлектрической постоянной на высоких и низких частотах.
Тангенс угла в обкладках и выводах конденсатора

где — последовательное сопротивление обкладок; — сопротивление выводов.

В практических расчетах — справочная величина, а определяется в зависимости от конфигурации конденсатора, материала и формы обкладок.

Сопротивление утечки конденсатора обусловлено наличием тока утечки
, до которого уменьшается ток в цепи при зарядке конденсатора, и определяется отношением напряжения U, приложенного к конденсатору, к значению этого тока:

где — начальный ток в зарядной цепи; — активное сопротивление зарядной цепи.

Наличие в диэлектрике конденсатора различных дефектов и неоднородность его структуры (слоистость, пористость, присутствие примесей, влаги и т. д.) обусловливает в нем определенное количество свободных зарядов, способных перемещаться под действием поля. Часть из них вызывает поляризацию диэлектрика, которая выражается коэффициентом остаточной поляризации:

где — остаточная разность потенциалов, возникающая на обкладках конденсатора после его разрядки.

Температурный коэффициент емкости ТКС характеризует отклонение емкости, обусловленное изменением температуры на величину . Его среднее значение в интервале температур аналитически определяют путем разделения левой и правой частей выражения ( ) на :

где — температурные коэффициенты обкладок конденсатора, диэлектрической проницаемости и толщины диэлектрика соответственно.

Поскольку все слои конденсатора жестко сцеплены между собой, а нижняя обкладка—с подложкой, . Так как значение ТКЛР подложек мало и ему соответствует то ТКС определяется , т. е.

Коэффициент старения определяет изменение емкости конденсатора, которое происходит вследствие деградационных явлений в пленке диэлектрика за время

:

где — коэффициент старения диэлектрической проницаемости.

Современная технология позволяет получать тонкопленочные конденсаторы любой конструкции (см. рис. 1) с емкостью 100.103 пФ, допуском ±(5—20)%,

, ТКС=

, добротностью Q=10—100 и . При этом форма конденсатора может быть не только прямоугольной, но и фигурной для наилучшего использования площади подложки.

РАСЧЕТ ТОНКОПЛЕНОЧНЫХ КОНДЕНСАТОРОВ.

Исходными данными для расчета тонкопленочных конденсаторов являются: номинальная емкость С,[пФ]; допуск на номинал ± С[%]; максимальное рабочее напряжение [В]; рабочая частота [Гц]; тангенс угла потерь ; диапазон рабочих температур [°С]; технологические данные и ограничения, в том числе погрешность воспроизведения удельной емкости и линейных размеров обкладок или их относительные cреднеквадратические отклонения коэффициент старения ; продолжительность работы или хранения и др.

Методика расчета

1. По заданной технологии и данным таблицы выбирают материал диэлектрика. Критериями выбора материала являются максимальные значения и минимальные значения ТКС, . Отметим, что на выбор материала диэлектрика существенно влияет область применения ИМС.

Так, конденсаторы на основе ИБС и АСС, которые обладают наибольшей диэлектрической постоянной , применяют в линейных ИМС на частотах до 10 МГц, когда требуется высокая степень интеграции, повышенная стабильность параметров и надежность в эксплуатации. В ИМС частотной селекции и БИС, работающих при высоких температурах, целесообразно использование конденсаторов на основе БСС, которые обладают наименьшим

ТКС и наибольшими значениями Q, в широком диапазоне частот и температур.

Конденсаторы на основе SiO и GeO, имевшие ранее широкое распространение ввиду простоты технологии, в настоящее время находят ограниченное применение из-за недостаточно высокой стабильности и надежности.
2. Из условия обеспечения электрической прочности с помощью ( ) определяют минимальную толщину диэлектрика. Значение d должно находиться в пределах 0,2—0,8 мкм.
3. Определяют удельную емкость конденсатора исходя из условий электрической прочности:


4. В зависимости от требуемых значений С, и С и руководствуясь рекомендациями ( ) выбирают конструкцию и форму конденсатора.
5. Определяют относительную температурную погрешность

а по ( ) — относительную погрешность обусловленную старением.
6. Используя ( ), определяют допустимую погрешность площади конденсатора при условиях


При этом
7. По конструктивно-технологическим данным на ограничение линейных размеров ( ) и выбранному значению с помощью (

) определяют максимальное значение удельной емкости .
8. Выбирают минимальную удельную емкость из условия

которое обеспечивает заданное значение Up и требуемое значение
6С.
9. По заданному значению С; и полученному по ( ) значению Со определяют коэффициент, учитывающий краевой эффект:

10. Определяют площадь перекрытия диэлектрика обкладками конденсатора с учетом коэффициента К:

При этом, если в результате расчетов по ( ), ( )
S2см2, то требуется выбрать другой диэлектрик с большим значением либо использовать дискретный конденсатор.


11. С учетом коэффициента определяют размеры верхней обкладки. Для обкладок квадратной формы . Полученные и округляют до значений, кратных шагу координатной сетки с учетом масштаба топологического чертежа.
12. С учетом допусков на перекрытие определяют размеры нижней обкладки

и диэлектрика

где q — размер перекрытия нижней и верхней обкладок; f — размер перекрытия нижней обкладки и диэлектрика. Для конструкции рис. 1, б

.
13. Определяют занимаемую конденсатором площадь
14. По выражениям ( ), ( ), ( ) и данным табл. определяют диэлектрические потери (полученное значение не должно превышать заданного), а с помощью ( ), ( ) оценивают обеспечение электрического режима и точности конденсатора в заданных условиях эксплуатации.

При проектировании группы конденсаторов расчет начинают, как правило, с конденсатора, имеющего наименьшее значение емкости. В этом случае целесообразно пользоваться программой расчета на ЭВМ.



мвмв

Наш опрос
Как Вы оцениваете работу нашего сайта?
Отлично
Не помог
Реклама
 
Авторское мнение может не совпадать с мнением редакции портала
Перепечатка материалов без ссылки на наш сайт запрещена