База научных работ, курсовых, рефератов! Lcbclan.ru Курсовые, рефераты, скачать реферат, лекции, дипломные работы

Дипломная работа: Организационно-методические основы занятий атлетической гимнастикой с учащимися старшего школьного возраста

Дипломная работа: Организационно-методические основы занятий атлетической гимнастикой с учащимися старшего школьного возраста

МИНИСТЕРСТВО ОБЩЕГО И ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ РФ

СТАВРОПОЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

ФАКУЛЬТЕТ ФИЗИЧЕСКОЙ КУЛЬТУРЫ

КАФЕДРА ГИМНАСТИКИ


Дипломная работа


Организационно-методические основы

занятий атлетической гимнастикой с учащимися

старшего школьного возраста.

Выполнил: студент экстерната ФФК

Георгиевского филиала

Андреенко Александр Александрович.


Руководитель: доцент, кандидат

педагогических наук

Яцынин Анатолий Иванович.

Рецензент_____________________

Дата сдачи_____________________

Оценка____________________


Ставрополь, 2004

СОДЕРЖАНИЕ

Стр.

ВВЕДЕНИЕ…………………………………………………………………..……4

ГЛАВА 1. ОБЗОР ЛИТЕРАТУРЫ ПО ТЕМЕ ИССЛЕДОВНИЯ……………. 5

1.1. Физиологические основы занятий атлетической гимнастикой…………...5

1.1.1. Мышечная система человека………………………………………………5

1.1.2. Строение мышечной ткани………………………………………………...8

1.1.3. Состав и структура скелетных мышц……………………………………12

1.1.4. Регуляция напряжения мышц…………………………………………….15

1.1.5. Мышечная механика……………………………………………………..20

1.1.6. Адаптация организма к физическим нагрузкам………………………..23

1.2. Организация и методика занятий атлетической гимнастикой…………...25

1.2.1. Восстановление организма и питание атлета при занятиях

атлетической гимнастикой………………………………………………..…….25

1.2.2. Закономерности тренировки начинающих атлетов…………………….30

1.2.3. Оборудование мест занятий атлетической гимнастикой…………….34

1.2.4. Подготовительная часть тренировочного занятия по атлетической

гимнастике…….…………………………………………………………………34

1.2.5. Регуляция дыхания при занятиях атлетической гимнастикой…………35

1.2.6. Виды нагрузок и направленность тренировочных занятий в

атлетической гимнастики………………………………………………………35

1.2.7. Характер и темп выполнения упражнений……………………………...38

1.2.8. Методы контроля за нагрузкой во время тренировки по атлетической гимнастике………………………………………………………………………..40

1.2.9. Расслабление во время тренировки……………………………………...41

1.2.10. Заключительная часть занятий по атлетической гимнастике………...42

1.2.11. Тренировочные программы на увеличение объёма грудной клетки…43

Глава 2. ЗАДАЧИ, МЕТОДЫ И ОРГАНИЗАЦИЯ ИССЛЕДОВАНИЯ…….46

2.1.   Задачи исследования…………………….……………………………….46

2.2.    Методы исследования……………………………………………………46

2.3.    Организация исследования………………………………………………48

ГЛАВА 3. РЕЗУЛЬТАТЫ ИССЛЕДОВНИЯ И ИХ ОБСУЖДЕНИЕ………..49

3.1. Содержание экспериментальной программы……………………………..49

3.2. Результаты исследования…………………………………………………..51

ВЫВОДЫ………………………………………………………………………...53

ЛИТЕРАТУРА…………………………………………….……………………..55

ПРИЛОЖЕНИЕ………………………………………………………………….57


ВВЕДЕНИЕ

Актуальность. Атлетическая гимнастика - это вид спорта, способствующий укреплению здоровья, исправлению и лечению многих врожденных и приобретенных дефектов телосложения и развитию физический способностей человека (1, 2, 6, 10, 14, 15).

Атлетическая гимнастика вызывает все больший интерес у молодёжи т.к. позволяет максимально компенси­ровать "двигательный голод", снимать стресс, укреп­лять сердечно-сосудистую систему, повышать иммуни­тет, ставить барьер на пути старости, справиться с многими болезнями и дефектами физического развития  человека.

 Практическая значимость. Посредством упражнений атлетической гимнастики происходит развитие мышечной системы, благотворно действующей на сердечно-сосудистую, дыхательную, иммунную и другие жизненно важные системы. Увеличивает прочность костей и связок. Является мощным профилактическим средством против таких болезней, как остеохондроз и старческая немощь, которые мучают почти 30% населения планеты Земля. Помимо этого занятия атлетической гимнастикой можно сравнить с работой скульптора, который работает над созданием внешнего вида человека, а это играет далеко не последнюю роль в нашей жизни.

Цель исследования. Разработать эффективную методику тренировки, для занимающихся атлетической гимнастикой, направленную на увеличение объёма грудной клетки.

Гипотеза исследования. С помощью специально разработанных тренировочных комплексов упражнений в процессе занятий учащихся старших классов атлетической гимнастикой существует реальная возможность увеличивать объём грудной клетки занимающихся.


ГЛАВА 1. ОБЗОР ЛИТЕРАТУРЫ ПО ТЕМЕ ИССЛЕДОВАНИЯ

1.1.     Физиологические основы атлетической гимнастики

1.1.1.  Мышечная система человека

В организме  человека различают скелетные, гладкие мышцы и сердечную мышцу.

Гладкие мышцы входят в состав внутренних органов тела человека.

Сердечная мышца занимает промежуточное положение по своим функциональным свойствам между скелетными и гладкими мышцами: она трудно управляется волевыми усилиями, но имеет чрезвычайно высокую работоспособность. Как и скелетная мышца, она может сокращаться быстро и мощно, но в то же время долго работать.

Скелетные мышцы являются активными элементами двигательного аппарата человека. Они образованы поперечно-полосатыми мы­шечными волокнами. Каждое мышечное волокно окружено про­зрачной оболочкой, содержащей эластичные коллагеновые нити. Небольшие группы мы­шечных волокон заключаются в оболочку из соединительной ткани (эндомизий), а более крупные пучки мышечных волокон и мышца в целом окружены рыхлой соединительной тканью. Все соединительные мышечные структуры непрерывно связаны между собой и являются продолжением друг друга. Они образуют параллельный эластический эле­мент мышцы.

У большинства скелетных мышц для удобства описания различают брюшко и два конца. Один из этих концов является началом мышцы и называется ее головкой, а проти­воположный конец получил название хвоста мышцы (рис. 1).

Рис. 1. Формы и строение скелетных мышц: А - верете­нообразная мышца; Б - одноперистая м.; В - двуперис­тая м.; Г - двуглавая м.; Д - многоперистая м.; Е - тре­угольная м.; Ж - двубрюшная м.; 3 - широкая мышца, имеющая апоневроз; И - зубчатая м.; К - квадратная м.;

Л - мышца с сухожильными перемычками: 1 - сухожи­лие; 2 - брюшко мышцы; 3 - апоневроз; 4 - головка мышцы; 5 -сухожильная перемычка (по Синельникову Р. Д., Синель­никову Я. Р., 1989).

У концов мышцы соединительная ткань образует сухожилия, которыми мышца при­крепляется к костям скелета. Эти сухожилия образованы пучками коллагеновых волокон, параллельно вытянутых по длине мыш­цы. Некоторые относительно плоские мыш­цы имеют соответственно и плоские сухо­жилия - апоневрозы (рис. 1).

Сверху каждая мышца покрыта оболоч­кой, которая называется фасцией. Фасции представляют собой пластины из соедини­тельной ткани с большим количеством кол­лагеновых и эластических волокон, имеющих различную протяженность, толщину и коли­чество слоев. Ориентация этих волокон по отношению к продольной оси мышцы обусловлена функциональными особенностя­ми каждой мышцы или группы мышц, покрытых данной фасцией. Фасции могут располагаться и между мышцами в виде перегородок, или срастаться с надкостницей, образуя влагалища, к стенкам которых прикрепляются мышцы. В наиболее подвиж­ных частях скелета, например, в области кисти или стопы, имеются волокнистые сухожильные влагалища, которые облегчают скольжение сухожилий в строго определен­ных направлениях (13).

По расположению мышечных волокон и их отношению к сухожилию различают три основных типа скелетных мышц.

1. Параллельный, у которого пучки мы­шечных волокон расположены параллельно продольной оси мышцы. Одни мышцы этого типа могут иметь от одной до четырех голо­вок, а другие - два брюшка, разделенных сухо­жильными перемычками (рис. 1 - А, Г, Ж).

2. Перистый, в котором параллельно рас­положенные пучки мышечных волокон на­ходятся под углом к продольной оси мышцы. Этот тип мышц может иметь несколько форм. Различают одноперистые мышцы, пучки волокон которых располагаются по одну сто­рону сухожилия, двуперистые - по обе сторо­ны сухожилия, а также многоперистые мыш­цы, пучки волокон которых примыкают друг к другу несколькими перистыми сегментами (рис. 1-Б, В, Д).

3. Треугольный тип - когда мышечные пучки сходятся с различных направлений к одному общему хвосту (рис. 1-Е).

К каждой мышце подходят нервы, управ­ляющие ее работой, и сосуды, снабжающие мышцу кровью.

Целенаправленная физическая тренировка оказывает положительное влияние не только на скелетные мышцы. Благодаря ей улучшается функциональное состояние и гладкой мускулатуры, и сердечной мышцы. Например, тренировкой на выносливость можно увеличить массу сердечной мышцы и повысить эффективность ее работы, что, в свою очередь, приводит к повышению работоспособности человека. А хорошо развитый «мышечный корсет» - не только признак силовой подготовленности: он также создает благоприятные условия и для деятельности внутренних органов, способствует улучшению работы пищеварительной системы. В конечном итоге, все это приводит к улучшению энергетического обеспечения мышечной деятельности и укреплению здоровья.

Физическая тренировка оказывает благотворное влияние на весь организм человека, на все виды мышечной ткани и на все системы жизнеобеспечения. При этом особая роль в осуществлении двигательной активности человека принадлежит скелетной мускулатуре.

1.1.2. Строение мышечной ткани

Скелетные мышцы составляют активную часть двигательного аппарата, являясь преобразователями химической энергии непосредственно в механическую работу и тепло.

Каждая скелетная мышца представляет собой орган, состоящий из мышечных клеток-миофибрилл, соединительной ткани, сосудов, нервов (рис.2).

Один грамм мышечной ткани содержит примерно 100 мг сократительных белков актина и миозина. Эти белки образуют в способных к сокращению миофибриллах тонкие и толстые нити, которые располагаются параллельно вдоль мышечной клетки. В микроскоп можно увидеть в миофибриллах чередующиеся темные и светлые поперечные полосы, из-за чего скелетные мышцы и получили название поперечно-полосатых. Эта поперечная исчерченность обусловлена особой регулярной организацией нитей актина и миозина. Поперечные темные перегородки, названные Z-пластинками, разделяют миофибриллы на саркомеры - структурно-функциональные единицы сократительного аппарата.

Рис. 2. Схематическое изображение строения мышцы. А - мышца; Б - пучок мышечных волокон; В - мышечное волокно; Г - миофибрилла; Д - схематическое изображе­ние саркомера, ограничено Z-линиями, с 1-дисками, А-дисками и Н-зоной; Е - поперечный срез на различных участках саркомера, дающий представление о распреде­лении тонких и толстых нитей актина и миозина (по Я. Коцу).

В середине каждого саркомера расположены несколько тысяч «толстых» миозиновых нитей, а на его обоих концах - до 2000 «тонких» актиновых нитей, прикрепляющихся к Z-пластинкам наподобие щетинок в щетке. Оптическая неоднородность саркомеров позволяет выделить в каждом из них светлые 1-диски, более темные А-диски, а также центральную Н-зону. 1-диски тянутся до Z-пластинок.(3)

В покоящихся мышцах I- и А -диски незначительно перекрываются, и, поэтому, в микроскоп кажутся несколько темнее, чем центральная Н-зона, в которой нет актиновых нитей. На электронных микрофотографиях можно также обнаружить в H-зоне центральную М-линию,  определяемую как сеть опорных белков, удерживающих вместе в виде пучка толстые нити миозина в середине саркомера ( рис. 2).

Мышца сокращается благодаря скольжению тонких актиновых нитей вдоль толстых нитей миозина, двигаясь между ними к середине саркомера. Сами актиновые и миозиновые нити не укорачиваются, их длина не изменяется и при растяжении мышечной ткани: лишь пучки тонких актиновых нитей, скользя между толстыми нитями миозина, выходят из промежутков между ними так, что степень их взаимного перекрытия может уменьшиться до нуля (рис. 2).

Разнонаправленное скольжение актиновых и миозиновых нитей в соседних половинках саркомеров осуществляется за счет того, что нити миозина имеют поперечные выступы, называемые «мостиками», или головками миозина (рис. 3). Каждый такой поперечный «мостик» во время сокращения и связывает миозиновую нить с актиновой: «наклоны» головок создают объединенное усилие и выполняют как бы «гребок», продвигающий нить актина к середине саркомера. При однократном движении поперечных мостиков вдоль актиновой нити саркомер может укоротиться только примерно на 1 % своей длины. Однако, мышцы при сокращении могут укорачиваться до 50% своей длины. При этом поперечные мостики делают не один «гребок», а как бы выполняют серию гребковых движений не один, а 50 раз за то же время. Благодаря суммации таких ритмических «гребков» и соответствующих им укорочений последовательно расположенных в миофибриллах саркомеров, мышца может развить большую силу.

Рис. 3. Схематическое изображение поперечных мостиков саркомера. Миозиновая нить с поперечными мостиками, соединенная с актиновыми нитями, А - до, Б - во время «гребковых движений» (эти движения происходят асинхронно), В - модель механизма генерации силы по­перечными мостиками до (слева) и во время (справа) «гребкового движения» (по Ruegg J. С., 1983).

Ритмические повороты головок миозина при этом «гребут» актиновые нити к середине саркомеров. Этот процесс для образности сравнивают с группой - людей, тянущих длинные веревки, перебирая их руками.

Вместе с тем, саркомер может генерировать силу и без относительного скольжения нитей, то есть без изменения своей длины - в строго изометрических (статических) условиях. Это является возможным благодаря эластичности поперечных «мостиков».

Но даже в условиях изометрического напряжения миозиновые «головки» не находятся в постоянном напряжении: уже через десятые или даже сотые доли секунды они «отпускают» миозиновые нити. Фаза такого их «восстановления» очень коротка: ритмическая смена прикреплений и отсоединений поперечных мостиков к актиновой нити происходит с частотой от 5 до 50 Гц. Но сила, развиваемая мышцей в физиологических условиях, при этом не колеблется, так как в каждый момент времени одно и то же количество миозиновых головок находится в «прикрепленном» к актиновой нити состоянии, что и обусловливает постоянство напряжения мышцы (1).

Так как каждое мышечное волокно состоит из большого количества последовательно расположенных саркомеров, то величина силы тяги, развиваемая этим волокном, и скорость его укорочения возрастают во столько раз, во сколько длина миофибриллы больше длины составляющих ее саркомеров. Поэтому более длинная мышца будет сокращаться сильнее и быстрее, чем короткая. Например, портняжная мышца лягушки сокращается всего лишь со скоростью 0,2м/сек, причем каждый ее саркомер из исходной длины 2 мкм за 50 мс укорачивается до длины 1 мкм. А мышцы руки человека, имея гораздо большую длину, укорачиваются уже со скоростью 8,0 м/сек.

Чем больше миофибрилл будет в мышце, тем она будет сильнее. Поэтому проявляемая мышцей сила пропорциональна ее физиологическому поперечнику.

1.1.3.  Состав и структура скелетных мышц

Мышечные волокна функционально объединены в двигательные единицы (ДЕ). ДЕ состоят из одного мотонейрона и группы иннервируемых им мышечных волокон (рис. 4). Состав различных мышц человека различается по количеству ДЕ. Значительно варьируют и размеры ДЕ - один мотонейрон может иннервировать от нескольких мышечных волокон до 500 - 2000. Количество волокон в ДЕ одной и той же мышцы также не одинаково. Каждое мышечное волокно состоит из миофибрилл ( рис. 4).

Мышцы, выполняющие «тонкую» и точную работу, например, мышцы глаз, пальцев рук и т. п, обладают большим количеством ДЕ (от 1500 до 3000), но состоят эти ДЕ из малого количества миофибрилл -от 8 до 50. В противоположность им, мышцы рук, ног или спины, выполняющие относительно более «грубые» и менее точные движения, но требующие большой силы, имеют гораздо меньшее количество ДЕ, состоящих из большого числа мышечных волокон: от 600 до 2000. Например, ДЕ бицепса плеча могут включать 1000, 1200, 1400 или даже 1600 миофибрилл. В ДЕ большеберцовой мышцы их около 1600, а в мышцах спины количество иннервируемых одной ДЕ миофибрилл достигает 2000 (13).

ДЕ состоят из двух основных типов мышечных волокон:

быстрых и сильных, но быстро утомляемых FT-волокон (Fast - быстрый, Twitch -сокращение);

выносливых, но менее сильных и быстрых ST-волокон (Slow - медленный).

Быстрые мышечные волокна имеют повышенное содержание гликогена, высокую активность анаэробных гликолитических ферментов, обеспечивающих использование внутримышечных энергетических субстратов, а потому они менее приспособлены для длительной работы, обеспечиваемой преимущественно аэробным (окислительным) способом энергопродукции. Не обладая большой выносливостью, эти волокна наиболее приспособлены для быстрых и сильных, но относительно кратковременных мышечных сокращений, обеспечивая выполнение кратковременной физической работы высокой мощности продолжительностью не более 4-х минут (к примеру - бег на короткие или средние дистанции). По международной номенклатуре быстрые мышечные волокна еще обозначаются как FG-тип (быстрые, Glycolysis -гликолигические).

Рис. 4. Схема строения двигательной единицы. 1 - тело мотонейрона; 2 - ядро; 3 - дендриты - короткие отростки; 4 - аксон - длинный отросток нервного волокна; 5 - оболочка нервного волокна, 6 - концевые веточки аксона; 7 - нервно-мышечные синапсы, через которые мышце передаются нервные импульсы; 8 -мышечное волокно с миофибриллами; 9 - оболочка мышечного волокна (по Я. Коцу).

Медленные мышечные волокна более приспособлены для обеспечения длительных, но менее мощных по силе мышечных сокращений, что характерно для выполнения продолжительной работы на выносливость. Медленные волокна имеют широко разветвленную капиллярную сеть, что позволяет им получать большое количество кислорода из крови. Эти волокна отличаются также повышенным содержанием миоглобина и наличием большого количества митохондрий (внутриклеточных структур, в которых протекают процессы окисления), характеризуются высокой активностью окислительных ферментов и имеют более высокое содержание жиров в виде триглицеридов - субстратов окисления. По международной номенклатуре медленные волокна обозначаются как SO-тип (Slow - медленные, Oxydative - окислительные) (1).

Вместе с тем, среди быстрых волокон выделяют подтип быстрых окислительно - гликолитических, по международной терминологии fog-тип. Эти волокна приспособлены к достаточно интенсивной окислительной (аэробной) работе с одновременным мощным гликолитическим энергообразованием, однако, их окислительные возможности ниже, чем у медленных окислительных волокон. С функциональной точки зрения они рассматриваются как промежуточный тип между двумя основными FG- и SO-типами мышечных волокон.

Композиционный состав мышц определен генетически: в течение жизни общее количество и соотношение имеющихся в мышцах типов волокон не изменяется. Под воздействием тренировки может изменяться толщина волокон всех типов, а значит, способность мышц к выполнению физической работы различной физиологической направленности.

У нетренированных молодых мужчин наибольшую толщину имеют волокна промежуточного FOG-типа, у молодых женщин -SO-типа. У мужчин в возрасте 16-30 лет, благодаря высокой двигательной активности, увеличивается толщина всех трех типов мышечных волокон. Визуально это выражается в наращивании у юношей объема мышечной массы, «возмужании». У женщин в этом периоде жизни мышечные волокна, наоборот, имеют тенденцию к утончению. Специалисты связывают это со снижением женщинами в этом возрасте интенсивности мышечной деятельности и двигательной активности в целом. Целенаправленными тренировочными занятиями можно существенно изменить общий объем мышечной массы различных сегментов тела и функциональные возможности мышц. Например, у некоторых тяжелоатлетов площадь поперечного среза четырехглавой мышцы бедра до 90% может состоять из быстрых и сильных FG-волокон, а у марафонцев - из медленных, но выносливых SO-волокон (3).

1.1.4.  Регуляция напряжения мышц

Управление движениями, поддержание вертикального положения и необ-

ходимая фиксация звеньев тела обеспечиваются сокращение в нужный момент времени определенных мышц и регуляцией степени их напряжения центральной нервной системой.

Регуляция мышечного напряжения осуществляется тремя физиологическими механизмами:

1) количеством активных ДЕ мышцы;

2) частотой импульсации мотонейронов ДЕ (т. е. режимом их работы);

3) временной связью активности ДЕ. ДЕ активизируется после того, как ее мотонейрон пошлет импульсы для сокращения иннервируемых мышечных волокон.

Двигательные единицы возбуждаются мотонейронами по физиологическому закону «все или ничего». Поэтому на нервный импульс реагируют одновременно все мышечные волокна одной ДЕ. Сила сокращения одной ДЕ зависит от количества составляющих ее мышечных волокон. Малые ДЕ развивают силу всего лишь в. несколько миллиньютон, а ДЕ с большим количеством волокон - в несколько ньютон. Как видно, силовой потенциал одной ДЕ невелик, поэтому для выполнения движения при сокращении мышцы одновременно «включаются» в работу несколько ДЕ, что в физиологии получило название «пространственной суммации». Чем выше внешнее сопротивление, тем больше ДЕ задействовано при генерации силы мышцей, и тем большее напряжение она развивает.

Необходимое число активных ДЕ определяется интенсивностью возбуждающих влияний более высоких уровней нервной системы на мотонейроны данной мышцы.(3)

Реакция мотонейронов ДЕ на возбуждающие влияния более высоких уровней нервной системы определяется порогом их возбуждения. Сам этот порог зависит от размера мотонейрона. Чем меньше размер тела мотонейрона, тем ниже порог его возбуждения и меньше размер ДЕ. Поэтому слабые мышечные напряжения обеспечиваются преимущественно активностью низко пороговых - малых и медленных ДЕ.

В естественных условиях сокращение ДЕ работающих мышц обусловлено не одиночными нервными импульсами, а их сериями с различной частотой -от 5 до 50 в одну секунду. При этом, когда каждый последующий нервный импульс подается до окончания фазы расслабления мышцы от воздействия предыдущего, то последующее за импульсом сокращение мышцы накладывается на предыдущее. В итоге происходит более высокое развитие силы. Когда нервные импульсы генерируются мотонейроном с высокой частотой, то спада напряжения мышц или развиваемой ими силы не происходит. При этом достигаются более сильные, чем при одиночных импульсах, сокращения мышечных волокон и 3-4-кратное увеличение развиваемой силы. Такое сокращение мышц называется титаническим (рис. 5). Продолжительность титанического сокращения ДЕ может в десятки и даже в тысячи раз превышать продолжительность ее сокращения от одиночного нервного импульса (13).

Если постепенно увеличивать напряжение мышц, то в работу будут вовлекаться все более крупные по размеру ДЕ: начиная от малых низко пороговых и до больших - высоко-пороговых.

Выносливые SO-волокна обладают низким порогом возбуждения. Частоты в 20 импульсов в секунду (20 Гц) уже может быть достаточно для полного исчерпания их силового потенциала.

В связи с тем, что FG-волокна сокращаются и расслабляются гораздо быстрее, чем SO-волокна, Частота импульсации для достижения их максимальной активации должна быть выше. Поэтому при частоте 25-30 Гц достигается лишь умеренное по силе напряжение у этого типа волокон. Максимальное напряжение и максимальная сила достигаются у них лишь при частотах 45-50 Гц. Мышца, состоящая преимущественно из ДЕ с SO-во-локнами, может поддерживать максимальный уровень своего напряжения значительно дольше, чем состоящая преимущественно из ДЕ с FG-волокнами. Но развиваемая при этом сила, очевидно, будет существенно ниже.

В связи с этим, необходимая для полного титанического  сокращения ДЕ частота импульсации мотонейрона зависит и от типа составляющих ее мышечных волокон.

Регулировка силы сокращения мышц за счет изменения частоты нервной импульсации определяется термином «временная суммация».

Когда скелетные мышцы преодолевают легкие и умеренные сопротивления, например, в быту или в процессе обычной трудовой деятельности, необходимая для их возбуждения частота нервной импульсации не достигает максимума, а деятельность низко пороговых ДЕ при этом осуществляется попеременно, т. е. асинхронно. В этом случае относительно низкое общее напряжение мышцы не колеблется, поскольку для разных асинхронно активных ДЕ максимумы сокращений никогда не совпадают (3).

Рис. 5. Режимы сокращений двигательной единицы им­пульсами различной частоты (по Я. Коцу).

При длительной мышечной работе умеренной интенсивность, например, в длительном беге или лыжных гонках, в первую очередь активизируются низко пороговые ДЕ. По мере утомления этих работающих ДЕ, их сократительная   способность   постепенно уменьшается, и в работу начинают вовлекаться более крупные и высоко пороговые ДЕ. Этим объясняется тот факт, что в процессе длительной работы умеренной интенсивности гликоген - внутримышечный источник энергии - более быстро расходуется в медленных SO-волокнах, а по мере продолжения работы и в быстрых FG-волокнах.

При скоростном проявлении силы и необходимости при этом преодоления мышцами умеренных и высоких внешних сопротивлений, происходит активизация преимущественно высоко пороговых ДЕ с FG-волокнами короткими сериями высокочастотных нервных импульсов. Такая стартовая иннервация вызывает сильный и нарастающий процесс мышечного сокращения, после чего за «взрывным» началом следует сигнальная блокировка биоэлектрической активности мышц. Во время этой «паузы» ДЕ и сокращаются с высокой скоростью. Движения при таком баллистическом характере мышечного сокращения заранее программируются в головном мозге и реализуются с такой высокой скоростью, что их коррекция по ходу движения часто оказывается практически невозможной. Период биоэлектрического «молчания», во время которого мышца не реагирует на поступающие к ней нервные импульсы, следующие за стартовой иннервацией, зависит преимущественно от величины преодолеваемого внешнего сопротивления (1).

Если внешнее сопротивление возрастает настолько, что при баллистическом сокращении мышц ускорения движения не происходит, то подается новая серия импульсов с последующим периодом «молчания», что в конечном итоге до определенного уровня величины внешнего сопротивления и обеспечивает дальнейшее ускорение выполняемого движения.

Движения, характеризуемые сериями импульсов стартовой иннервации с последующим периодом сигнальной блокировки и проявлением баллистического режима мышечного сокращения, имеют резко выраженный скоростно-силовой характер.

Если же сопротивление увеличивается до максимального или близкого к нему, то такое сопротивление будет преодолеваться уже более продолжительными сериями импульсов очень высокой частоты. Такой режим работы мышц характерен для проявления максимальной силы.

1.1.5.  Мышечная механика

Механические свойства мышц достаточно сложны и зависят от свойств образующих их компонентов: миофибрилл, соединительных и трофических образований и т, п., а также от состояния самой мышцы.

Для понимания большинства свойств мышечной механики можно использовать упрощенную модель ее строения. Эта модель представляет собой комбинацию сократительных и упругих компонентов мышцы (рис. 6).

Сократительные элементы соответствуют участкам саркомеров, где актиновые и миозиновые нити перекрывают друг друга. В этих участках при возбуждении мышцы и происходит генерация мышечной силы.

Актиновые и миозиновые нити легко скользят относительно друг друга, поэтому в расслабленных мышцах сопротивление растяжению оказывается очень низким. Укороченную при сокращении мышцу небольшим усилием можно снова растянуть до исходной длины. Однако это растяжение мышцы до своей исходной длины является пассивным процессом, который может быть осуществлен лишь за счет внешнего воздействия.

Если же покоящуюся мышцу потянуть за один конец так, чтобы ее волокна растянулись, то после снятия внешней нагрузки мышца восстанавливает свою длину. Это говорит о том, что в ней развивается пассивное напряжение. Значит, покоящаяся мышца обладает эластичностью, которая свойственна преимущественно растяжимым структурам, расположенным параллельно по отношению к сократительным элементам мышцы - миофибриллам. К этим параллельным эластическим элементам относятся окружающие мышечное волокно оболочка (сарколемма), элементы соединительной ткани между волокнами и их пучками, и некоторые другие структурные компоненты мышечной клетки (3).

Зависимость между величиной внешней нагрузки и удлинением мышцы нелинейная. Модуль упругости покоящейся мышцы возрастает с ее растяжением.

Рис. 6. Аналоговая модель строения мышцы: СЭ - сокра­тительный элемент, ПаЭЭ - параллельный эластический элемент, ПоЭЭ - последовательный эластический эле­мент (по RueggJ. С. 1983).

Степень предварительного растяжения определяет и величину дополнительной силы эластического напряжения мышцы, которую она может развить в процессе своей активации при данной исходной длине. Соотношение сила - длина мышцы при ее изометрическом напряжении зависит от степени взаимного перекрывания нитей актина и миозина в саркомере (рис. 7). Максимум силы достигается при длине мышцы, соответствующей состоянию саркомера, когда его длина составляет от 2,0 до 2,2 мкм. При меньшей длине мышцы (или саркомера) сила уменьшается, поскольку актиновые и миозиновые нити начинают мешать друг другу, а также и из-за некоторых других факторов, возникающих при укорочении мышцы. Все это обычно не позволяет мышцам укорачиваться при сокращении до длины, меньшей чем 50-70% от их длины в покое.

Если же мышцу растягивать более, чем ее длина в покое, то сократительная сила также уменьшается, потому что нити актина при этом вытягиваются из пучка нитей миозина. Поэтому, при увеличении длины саркомера до 2,9 мкм, мышечное волокно сможет развить только около 50% от своего изометрического максимума, так как зона взаимного перекрытия сократительных элементов составляет лишь половину от максимальной. При длине саркомера 3,6 мкм и более миофибриллы уже не могут генерировать силу, потому что их актиновые и миозиновые нити не перекрываются (25).

Мышцы на своих концах переходят в сухожилия, через которые они передают усилия на костные рычаги. Сухожилия также обладают упругими свойствами, которые классифицируются как последовательный упругий элемент мышцы.

Рис. 7. Зависимость между силой сокращения, длиной саркомера и степенью перекрывания актиновых и миозиновых нитей: А - зависимость между максимальной изометрической силой, развиваемой саркомером во время тетануса и его длиной; Б - взаимное перекрывание актиновых и миозиновых нитей при различной длине саркомера (по Gordor A. M. и др., 1966, переработано).

При внезапном и сильном внешнем воздействии, или при высокой и резкой силе мышечного сокращения, эластические элементы мышцы, растягиваясь, смягчают силовые воздействия, распределяя действие силы в течение более длительного промежутка времени. В некоторых случаях упругость мышц может создавать дополнительную силу, например, в начальной фазе движения.

Сухожилия обладают большей прочностью на растяжение (примерно 7000 Н/см2), чем мышечная ткань (всего около 60 Н/см2). Наиболее слабыми, и поэтому часто травмируемыми участками мышцы, являются переходы мышцы в сухожилия. Поэтому, перед каждым тренировочным занятием, необходима хорошая предварительная подготовка разминка.

1.1.7. Адаптация организма к физическим нагрузкам

С биологической точки зрения физическая подготовка представляет собой процесс направленной адаптации организмах тренировочным воздействиям. Нагрузки, применяемые в процессе физической подготовки, выполняют роль раздражителя, возбуждающего приспособительные изменения в организме. Тренировочный эффект определяется направленностью и величиной физиологических и биохимических изменений, происходящих под воздействием применяемых нагрузок. Глубина происходящих при этом в организме сдвигов зависит от основных характеристик физической нагрузки: интенсивности и продолжительности выполняемых упражнений; количества повторений упражнений; вида физических упражнений; продолжительности и характера интервалов отдыха между повторением упражнений.

Определенное сочетание перечисленных параметров физических нагрузок приводит к необходимым изменениям в организме; к перестройке обмена веществ и, в конечном итоге, к росту тренированности.

Процесс адаптации организма к воздействию физических нагрузок имеет фазный характер. Поэтому выделяют два этапа адаптации: срочный и долговременный (хронический) (29).

Этап срочной адаптации сводится преимущественно к изменениям энергетического обмена и связанных с ним функций вегетативного обеспечения на основе уже сформированных механизмов их реализации, и представляет собой непосредственный ответ организма на однократные воздействия физических нагрузок.

При многократном повторении физических воздействий и суммировании многих следов нагрузок, постепенно развивается долгосрочная адаптация. Этот этап связан с формированием в организме функциональных и структурных изменений, происходящих вследствие стимуляции генетического аппарата нагружаемых во время работы клеток. В процессе долговременной адаптации к физическим нагрузкам активируется синтез нуклеиновых кислот и специфических белков, в результате чего происходит увеличение  возможностей   опорно-двигательного аппарата, совершенствуется  его энергообеспечение (12).

Разовость протекания процессов адаптации к физическим нагрузкам позволяет выделять три разновидности эффектов в ответ на выполняемую работу.

Срочный тренировочный эффект, возникающий непосредственно во время выполнения физических упражнений и в период срочного восстановления в течение 0,5-1,0 часа после окончания работы. В это время происходит устранение образовавшегося во время работы кислородного долга.

Отставленный тренировочный эффект, сущность которого составляет активизация физической нагрузкой пластических процессов для избыточного синтеза разрушенных при работе клеточных структур и возобновление энергетических ресурсов организма. Этот эффект наблюдается на поздних /фазах восстановления (обычно в пределах до 48 часов после окончания нагрузки).

Кумулятивный тренировочный эффект является результатом последовательного суммирования срочных и отставленных эффектов повторяющихся нагрузок. В результате кумуляции следовых процессов физических воздействий на протяжении длительных периодов тренировки (более одного месяца) происходит прирост показателей работоспособности и улучшение спортивных результатов (3)

Небольшие по объему физические нагрузки не стимулируют развитие тренируемой функции и считаются неэффективными. Для достижения выраженного кумулятивного тренировочного эффекта необходимо выполнить объем работы, превышающий величину неэффективных нагрузок.

Дальнейшее наращивание объемов выполняемой работы сопровождается, до определенного предела, пропорциональным увеличением тренируемой функции. Если же нагрузка превышает предельно допустимый уровень, то развивается состояние перетренированности, происходит срыв адаптации (28).

1.2. Организация и методика занятий атлетической гимнастикой

Наиболее подходящим возрастом для занятий атлетической гимнастикой является возраст от 16 до 18 лет, хотя нельзя отрицать и, занятия в более младшем возрасте.

Если существуют, какие – либо сомнения, лучше всего посоветоваться со спортивным врачом. Для мужчин среднего возраста, желающих заниматься этим видом спорта, совет такого врача тем более необходим. Этим видом спорта люди могут заниматься до 45 – 50 лет. Известны случаи, что мужчины в возрасте свыше 50 лет, особенно если они раньше занимались физической культурой и спортом, достигали замечательных результатов в атлетической гимнастике, сохраняли физическую форму и хорошую жизнеспособность(2).


1.2.1. Восстановление организма и питание атлета при занятиях

атлетической гимнастикой

Прогресс в результатах невозможен без эффективной системы восстановления. Восстановление — это не только биологическое уравновешивание всех функций и систем организма после физических нагрузок, но и пе­ревод функций органов, тканей, клеток на новый, бо­лее высокий энергетический уровень.

Восстановление организма и поддержание его рабо­тоспособности можно осуществлять целенаправленной регуляцией процессов метаболизма с помощью биоло­гически активных веществ. Такое вмешательство край­не необходимо в условиях предельных физических и психических напряжений.

Следует остановиться и на восстановлении организма в процессе тренировки. Установлено, что наиболее ин­тенсивно восстановление протекает в начале отдыха, поэтому несколько коротких пауз для отдыха более эффективны, чем одна длинная. Выяснилось также, что процесс восстановления протекает быстрее не при пассивном отдыхе, а при совершении малоинтенсивной работы,

упражнений на расслабление, гибкость и т.д. (29).

Наиболее быстро после тренировочной нагрузки от 80 минут до 6 часов восстанавливаются сердечно-со­судистая, нервно-мышечная системы, восполняются потери фосфатных соединений, нормализуются жидко­стный и минеральный балансы. Более длительное время от 6 часов до нескольких суток уходит на восполнение израсходованных веществ (гликогена, сократительных белков и др.). И только после этого может наступить суперкомпенсапия восполнение энергии и переход на более высокий уровень (13).

В исследованиях А.Н. Воробьева (1) приводятся данные о дли­тельности восстановления после упражнений с отяго­щениями. Так, после однократного приседания со штангой (80% от лучшего результата) время восста­новления 2 минуты. Каждое последующее приседание требует увеличения его на 1 минуту. С ростом интен­сивности в упражнениях со штангой увеличивается и время восстановления.

В таблице 1 для иллюстрации приведены примеры восстановления отдельных групп мышц (в часах) ква­лифицированного спортсмена в зависимости от ве­личины тренировочной нагрузки.

В подготовительный период очень важно проводить тренировки на развитие силовой вы­носливости, что способствует в дальнейшем сокращению времени восстановления и позволяет более длительный срок выдерживать высокоинтенсивную нагрузку.

Потребляемая пища является источником хи­мической энергии, а также участвует в образовании структурных  элементов  нашего тела за счет "сжигания" питательных веществ: белков, жиров и уг­леводов.

Рацион занимающихся культуризмом должен на 55% состоять из углеводов, на 30% — из жиров, на 15% — из белков и содержать достаточное количество витаминов, минеральных веществ и воды.

Таблица 1.

Восстановление отдельных групп мышц (в часах) ква­лифицированного спортсмена в зависимости от ве­личины тренировочной нагрузки

Мышечные группы Величина тренировочной  нагрузки

80%

85%

90%

Грудные мышцы 52 68 78-84
Дельтовидные мышцы 46 60 74
Двуглавые и трехглавые мышцы плеча 50 58 70
Трапециевидные мышцы 54 70 89
Широчайшая мышца спины 90 94 112-126
Разгибатели спины 65 68 96
Четырехглавая мышца бедра 78 82 110-120
Мышцы живота 30 34 35-42
Мышцы предплечья 30 30 40-52
Икроножные мышцы 30 32 42-58

У культуристов повышенная потребность в белках, несмотря на то, что белки выполняют второстепенную как энергоносители (1 грамм белка при окислении 4,1ккал тепла). Потребность в белках объясняется в основном назначением: создавать и восстанавливать клетки и ткани. Среднесуточная норма потребления белков в период наращивания мышечной массы для атлетов весовых категорий 65-80 кг составляет 2.5 г на 1 кг массы тела; а в период тренировки,  направленной на  улучшение формы рельефа мышц, 1,4-2,0 г. для спортсменов массой свыше 80 кг потребность в белках составляет соответственно 1,6-2.3 г и 1,4-1,8 г.

Установлено, что в организме атлета за сутки может синтезироваться не более 18 г белка. Поэтому прием белка в количествах более 8 г на 1 кг массы тела нецелесообразен, так как нарушается его усваиваемость и увеличивается выделение с потом и мочой, появляется тенденция к интоксикации организма продуктами распада белка, что в свою очередь, вызывает расстройства функций печени и почек (6).

Белки состоят из аминокислот. Из 30 аминокислот 10 являются незаменимыми и поступают в организм с пищей. Без них резко нарушается синтез белка, прекращается восстановление мышечной ткани, снижается масса тела. К незаменимым аминокислотам относятся лейцин, треонин, валин. метионин, лизин, фенилаламин. гистидин, аргинин, триптофан. Другие аминокис­лоты считаются заменимыми. Например, триазин может заменяться фенилаламином (13).

Белки, содержащие весь набор аминокислот, необхо­димых для обеспечения нормального процесса синтеза являются биологически полноценными. Белки не содержащие те или иные аминокислоты или содержащие их в очень малых дозах, неполноценны. Например, белок пшеницы содержит очень мало триптофана и лизина.

Белки также подразделяются на белки животного и растительного происхождения. Потребность в животных белках может быть удов­летворена за счет мяса, икры, рыбы, молока, яиц, мо­лочных продуктов. Основными источниками расти­тельных белков являются бобовые, хлеб, орехи. Следу­ет отметить, что растительные белки, особенно содер­жащиеся в соевой муке, овсяных хлопьях, рисе, легче усваиваются, чем белки животного происхождения. Поэтому в питательные смеси добавляют эти продукты.

В настоящее время большой интерес для атлетов представляют протеины - препараты с повышенным содержанием белка. Их пищевая ценность для культуристов несомненна.

Известно, что под влиянием больших физических на­грузок происходит угнетение процессов переваривания, поэтому атлетам рекомендуется использовать легко усваиваемые белки. Этим требованиям наиболее полно отвечают протеины.

Углеводы в организме являются главным поставщи­ком энергии и тепла. Кроме того, они обеспечивают выносливость при длительных нагрузках. Энерге­тическая значимость углеводов обусловлена быстротой их распада и окисления, особенно в случаях эмоцио­нального возбуждения или значительных мышечных напряжений (24).

В организм углеводы поступают в виде крахмала (хлеб, мучные изделия, картофель) или сахара (овощи, фрукты, сладости, мед). Особое место среди этих про­дуктов занимает мед — его заслуженно называют "супергорючим для сердца". В мышцах и печени угле­воды накапливаются в виде гликогена. Величина депо гликогена в организме составляет в среднем 120 г. Су­точная потребность в углеводах в подготовительный период (развитие мышечных волокон) составляет 9-10 г на 1 кг массы тела, а в предсоревновательный период — 10-11 г. Излишки потребляемых атлетами углеводов превращаются в жировые отложения и отрицательно сказываются на форме, а также вызывают повышенное чувство жажды.

Углеводы необходимы для нормальной деятельности центральной нервной системы (в 1 л крови должен со­держаться 1 г глюкозы). В поступающих в организм углеводах имеется клетчатка, пектин, которые не рас­щепляются (балластные вещества) и не используются как энергетический материал. Однако их присутствие очень важно для стимуляции деятельности кишечника. Они являются сильными сорбентами, связывают и вы­водят из организма различные загрязнения, в том числе и радионуклиды, снижают гнилостные процессы в кишечнике, противодействуют запорам.

Достаточное количество углеводов в организме помо­гает эффективному использованию белков в качестве топлива.

Из всех продуктов питания именно жиры обладают наибольшей энергетической ценностью (1 г жира при окислении дает 9,3 ккал). Кроме того, жиры являются важным компонентом активизации гормонально управ­ляемых обменных процессов, выполняют теплозащит­ную функцию.

Для удовлетворения потребности организма в жирах культуристы должны иметь в рационе 65% жиров жи­вотного происхождения (сливочное масло, свинина, сметана, сыры) и 35% растительных жиров (подсолнечное масло, орехи, овсяная крупа).

В период интенсивных тренировок перед соревнова­ниями количество жиров целесообразно снизить, так как они плохо усваиваются при больших нагрузках.

1.2.2. Закономерности тренировки начинающих атлетов

Начинающие заниматься атлетизмом постоянно должны помнить о том, что нельзя «копировать» тренировки опытных атлетов. Почему же нельзя этого делать и как следует тренироваться начинающим спортсменам? Ответ на первую часть вопроса можно получить с помощью анализа информации, приведенной на рис. 8.

Иллюстрация 8 показывает, что одна и та же нагрузка вызывает более глубокие сдвиги в организме начинающих спортсменов. В свою очередь восстановление занимает у этих спортсменов более длительный период времени, чем у квалифицированных атлетов. Это одна из основных причин, по которой  начинающим  заниматься атлетизмом рекомендуется тренироваться 2—3 раза в неделю (1,6). При увеличении количества тренировок в недельном цикле возможны случаи недовосстановления, что может привести к перенапряжению.


Рис. 8. Реакция организма спортсменов различной квалификации на одинаковые по объему и интенсивности нагрузку.

Другая важная общебиологическая закономерность, знание которой позволит начинающим атлетам осознанно не торопиться - проблема адаптации (2).

На общедоступном уровне адаптацию можно рассматривать как приспособление организма спортсмена к тренировке. Для начинающих спортсменов занятия 3 раза в неделю являются достаточно сильным «раздражителем», под воздействием которого происходит увеличение силы и мышечной массы. В этом и проявляется приспособление организма к тренировкам—адаптация первого типа.

Вторая сторона адаптации — привыкание. Если постоянный раздражитель длительное время не меняется, то ответная реакция организма на него уменьшается. Происходит привыкание—адаптация второго типа, в результате которой рост силы и мышечной массы прекращаются, если в тренировочный процесс не включаются более сильные «раздражители», как, например, увеличение количества тренировок в недельном цикле. Но сначала необходимо исчерпать возможности двух трехразовых занятий в неделю.

Особенности адаптации организма следует учитывать и в подборе упражнений при составлении тренировочных комплексов. Начинающим рекомендуется на каждом занятии прорабатывать практически все основные мышечные группы—по 1 —2 упражнения для мышц рук, плеч, груди, спины, ног, пресса. Каждое упражнение можно выполнять в 1—2 подходах по 10—12 раз. Нагрузка на первый взгляд небольшая, но для тех, кто раньше не занимался с отягощениями, она является новым, необычным раздражителем, вызывающим приспособительные реакции организма, результатом которых является увеличение силы и мышечной массы (29).

Со временем «комплексные» занятия становятся привычными, и организм перестает на них реагировать. Новый уровень подготовленности спортсменов требует более сильных раздражителей,  таких  как,  например, «Сплит» (разделение), при котором в одной тренировке прорабатываются не все мышечные группы, а только их часть, но с большим количеством подходов на каждую группу.

Прежде чем приступить к тренировкам, желательно установить конституционные особенности вашего те­лосложения. Из всего многообразия типов сложения выделено три основных: нормостенический, гиперстенический, астенический.

                                                 

Нормостенический тип          Гиперстенический тип               Астенический тип

Нормостенический тип, иначе его еще называют ат­летическим, подразумевает пропорциональное, симмет­ричное сложение.

Это наиболее предрасположенный к занятиям культуризмом тип конституции. Организм, как пра­вило, хорошо воспринимает нагрузку. Мышцы качес­твенные, активно реагируют на силовую и объемную (увеличение массы) работу. Все имеющиеся в литера­туре рекомендации рассчитаны на физиологическую специфику нормостенического типа сложения (1).

Гиперстенический тип характеризуется приземистос­тью, мощным, широким костяком, склонностью к пол­ноте. Тренировка такой группы имеет свою специфику:

количество повторений в среднем увеличивается на 2-3 раза, занятия носят более интенсивный характер за счет сокращения (на 20-30 секунд) времени отдыха между подходами. Из рациона питания желательно исключить кондитерские изделия, сладости, сахар, жирные продукты. До минимума свести потребление соли.

К астеническому типу сложения относятся люди с "тонкой" костью, не обладающие значительными жиро­выми отложениями. Обычно таких людей называют стройными.

Тренировочный процесс у них также имеет свои осо­бенности. В большинстве случаев в этой группе от­мечается замедленный прирост результатов в силе и мышечной массе. Однако ни в коем случае нельзя фор­сировать естественный ход развития мышц, — как пра­вило, это приводит к травмам, перетренировке.

Продолжительность занятий у людей астенического типа после адаптации к нагрузке должна быть на 20-30 минут короче, чем у спортсменов, относящихся к нормостеническому типу. Число повторений снижается в среднем в два раза, время отдыха между подходами увеличивается на 30-50 секунд. Питание более ка­лорийное, отличающееся разнообразием продуктов. После приема пищи желателен отдых до 20 минут. Никаких ограничений в потреблении жидкости. Между приемами пищи (5-6 раз в день) рекомендуется выпивать стакан молока или протеиновый коктейль. По возможности удлинить время сна до 10 часов.

1.2.3. Оборудование для занятий атлетической гимнастикой

Занятия атлетической гимнастикой невозможны без соответствующего оборудования. Количество существующего оборудования огромно и для описания требует отдельной книги (19).

Все оборудование для занятий можно условно разделить на три группы:

1.Устройства для работы с массой собственного тела – перекладина, параллельные брусья, наклонная доска и др.

2.Устройства для работы со штангой и гантелями – станок, для жима лежа, стойки для приседаний, станок для бицепсов, наклонные скамьи для жимов и др.

3.Тренажеры – блочные, шарнирные.

1.2.4. Подготовительная часть тренировочного занятия по

атлетической гимнастике

Любому соревнованию, тренировке предшествует разминка. В этом виде спорта она настолько важна, что, по сути дела, составляет с ним единое целое. Разминка разогревает весь организм, снабжает кровью все мышечные группы, повышает эластичность мускулов и сухожилий, расслабляет (сухожильные) суставные сумки, подготавливает дыхание и внутренние органы к работе более интенсивной, как и весь организм в целом.

В практике пользуются двумя видами разминки:

а) вводной разминкой,

б) разминкой в ходе тренировки.

Вводная разминка перед началом основной части тренировки, направлена на подготовку всего организма к работе. Длительность ее не превышает 5 – 10 минут, но отличается высоким темпом и ритмичностью. Упражнения для разминки обычно подбирают сами (28).

В разминку в ходе тренировки, как правило, включают упражнение, которое будет основным для той или иной серии, но выполнять его следует со значительно меньшим отягощением. Обычно 40-50 % от максимально возможного.

1.2.5. Регуляция дыхания во время тренировки

С самого начала занятий нужно уделять особое внимание дыханию. При задержке дыхания на длительное время, особенно если она сопровождается физическим напряжением, краснеют или синеют лицо и шея, набухают вены на лбу. Иногда такие симптомы могут означать, что груз или отягощение с которым выполняется упражнение слишком велик, и следовательно, следует уменьшить его вес. При выполнении упражнения вход, как правило, приходится на движение при которых тело наклоняется назад или выпрямляется, или когда грудная клетка расширяется, а руки поднимаются вверх или отводятся назад. Соответственно выдох сопровождает противоположным только что описанным движением. Разумеется, имеют место и исключения, когда сам характер упражнения имеет ритмику дыхания. Занимающимся, особенно начинающим, рекомендуют дышать громко, так чтобы был слышен шум вдыхаемого и выдыхаемого воздуха. Такой акустический контроль позволяет улучшить ритмику дыхания, определить его глубину и правильность, благодаря чему будет обеспечена равномерное поступление в легкие воздуха обогащенного кислородом. Если все, же по каким – либо причинам приходится задерживать дыхание, нужно стараться, чтобы эта задержка была как можно короче (2).


1.2.6. Виды нагрузок и направленность тренировочных занятий в

атлетической гимнастике

При занятиях важное значение играет правильно выбранная нагрузка. На правильный выбор веса груза, отягощения влияют несколько факторов. В первую очередь это зависит от мышечной группы, на развитие которой направлено упражнение, затем от количества повторений выполняемого упражнения с учетом его воздействия и, конечно, от того, какие снаряды используются при выполнении упражнения.

При многократном выполнении упражнений используются три основных вида дозировки, а в связи с этим и три соответствующих им вида нагрузки:

При большом количестве повторений (15 и больше) – малая нагрузка.

При среднем количестве повторений (8-10 раз) – средняя нагрузка.

При малом количестве повторений (1-3 раза) – максимальная или большая нагрузка.

Один из способов, как правильно определять правильную величину нагрузки или вес груза для одного из видов дозировки, заключается в том, что следует найти максимальный вес, с которым вы будете правильно выполнять упражнение. На практике это выглядит так: со штанги постепенно снимаются диски, пока их не останется столько, сколько вам не помешает правильно выполнить данное упражнение это и будет максимальный груз (15).

Для определения веса груза следует руководствоваться следующим:

при большом количестве повторений уменьшить вес штанги на 50-70 % в зависимости сколько раз нужно упражнение повторить (15 или 30) – это и будет малой нагрузкой;

при среднем количестве повторений (6-10) уменьшить вес штанги на 30 –40 % по сравнению с весом штанги при максимальной нагрузке – это средняя нагрузка;

при малом количестве повторений (1-3) уменьшая вес штанги на 5-10%, получим большую нагрузку.

Например, при жиме обеими руками штанги за головой упражнение было вами сделано, когда штанга весила 40 кг. Тогда при большом количестве повторений штанга должна весить 15 - 20 кг, при малом – 35 – 37,5 кг или все 40 кг.

При выполнении некоторых упражнений (например, наклоны туловища вперед со штангой за головой, приседая, жимы в положении лежа и д.т.), где попытки достичь максимального результата могут повлечь за собой (главным образом начинающих) серьезные травмы, выбирать нагрузку нужно от меньшей к большей. Нужно начинать с малого веса, постепенно увеличивая его до тех пор, пока последние 2-3 упражнения из числа предписанных будут вами выполнены с почти максимальным усилием, то есть «субмаксимальным». Нужно обращать на это внимание особенно с новичками.

Для постоянного роста силы и мышечной массы каждые 2 – 3 недели нужно увеличивать вес используемых снарядов на 2 – 2,5 кг – при упражнениях для бицепса, трицепса и дельтовидной мышцы и других, 5 – 7,5 кг – при упражнениях для развития мускулатуры ног или чисто силового характера (жимы, приседания).

Количество повторений при выполнении упражнения определяется в зависимости от цели тренировки. Можно выделить три вида дозировки:

Большое количество повторений. Применяется в трех случаях:

начинающими, которые хотят избавиться от лишнего жира, улучшить свою фигуру, повысить сопротивляемость мускулатуры;

подготовленным спортсменам, которые хотят приобрести более совершенную и рельефную мускулатуру: в этом случае дозировка чрезвычайно высока (50 - 100), как и темп самих упражнений;

как начинающим и более опытным спортсменам в случае, когда нет возможности использовать в тренировках снаряды и инвентарь.

Среднее количество повторений (6 – 10 раз) – наиболее употребляемая в тренировках, как новичков, так и у достаточно подготовленных спортсменов. При таких упражнениях используется средняя нагрузка (максимальный вес снижен на 30 – 40 %). Эта дозировка является самой рациональной для развития и роста мышечной массы, равно как и для развития силы мышц и выносливости (8).

Малое количество повторений (1 – 3раза). Используется для интенсивного развития мускулатуры, увеличения веса и, главное, для развития физической силы. Этот вид дозировки предназначен для хорошо подготовленных спортсменов, которые намерены выступать в ответственных соревнованиях по какому – либо виду спорта. Нагрузка при такой дозировке весьма высока: 90 – 95 – 100% максимального веса.

1.2.7. Характер и темп выполнения упражнений

Предписанное количество повторений одного и того же упражнения, выполняется без отдыха, называется серией или подходом, чтобы определенное упражнение сказало наибольшее воздействие на мускул следует использовать несколько подходов:

-     с одним и тем же количеством повторений;

-     с меньшим количеством повторений, но зато с использованием большого веса;

-     с большим количеством повторений, но с меньшим весом груза.

По мере тренированности спортсмена меняется и количество подходов:

-     у начинающих количество подходов колеблется между 1 и 3;

-     у более подготовленных – между 3 и 5;

-     при так называемой специализации, когда отдается предпочтение развитию определенных мышечных групп, используется и большое количество подходов, то есть 6 – 10.

Такое чрезвычайно большое количество подходов можно рекомендовать лишь хорошо тренированным лицам, обладающим большой выносливостью. Причем для остальных групп мышц, в особом развитии которых нет необходимости, используется только 2 – 3 подхода (22).

Суперсерия или «суперсет» - понятие, которым весьма часто придется пользоваться, особенно на более поздних этапах обучения, выполняя упражнения для хорошо подготовленных спортсменов. Суперсерия оказывает более эффективное, чем серия, воздействие на развитие мышц и их силу. Это особенно необходимо самым выносливым атлетам, а так же тем, кто исчерпал все имеющиеся возможности и у них наблюдается определенный застой в развитии. Речь идет о соединении двух различных упражнений с аналогичным воздействием на один и тот же мускул. В качестве примера можно привести упражнения для развития и увеличения силы бицепса:

а) поднимание штанги на грудь с помощью сгибания рук в локтевых суставах;

б) попеременное сгибание рук в локтевых суставах с одновременным вращением предплечья: выполнить предписанное количество повторений первого упражнения, затем оставить штангу и немного отдохнув, приступить к выполнению определенного количества повторений другого упражнения. Этим двум упражнениям можно дать объединяющее название «суперсерия» или «суперсет». После ее выполнения следует перерыв, а потом следующая суперсерия (18).

Темп занятий делится на: 1) быстрый, 2) средний, 3) медленный.

Быстрый темп применяется при выполнении упражнения с малым отягощением, а так же без отягощения, если занимающийся ставит цель согнать вес, а более подготовленный атлет стремится к большей рельефности своих мышц. Упражнения выполняются также с максимальной быстротой в том случае, когда целью является приобретение скоростной силы, при этом используются отягощения среднего или максимального веса иногда максимальная быстрота идет в ущерб точности движений и не всегда достаточно эффективно развивает силу, поэтому следует время от времени, в виде прикидок проверять, как развивается сила, выполняя какое – либо упражнение на время: например, сколько раз вам удалось отжаться на брусьях за время и т.д. (24).

Для культуристов наиболее подходящим является средний темп выполнения упражнений с соблюдением ритмичности, при котором мускульное напряжение чередуется с расслаблением. Этот темп является наиболее оптимальным для развития мышц. При таком ритме наиболее благоприятно действует нагрузка на внутренние органы, что способствует их хорошей работе, оптимальному состоянию центральной нервной системы.

Медленный темп выполнения упражнений используется обычно в следующих случаях:

-          если использованное отягощение не позволяет заниматься в среднем темпе;

-          если положение тела исключает в связи с возможным повреждением мышц, быстрый и средний темп;

-          если с помощью медленного темпа вы хотите вовлечь в максимальную работу мускулатуру.

Медленный темп можно комбинировать со средним, например, таким образом, что первые 6 повторений упражнения будут сделаны в среднем темпе, а следующие 2 – 3 в медленном. Можно так же использовать среднюю нагрузку, заниматься, в среднем темпе заставляя переменами напрягать те мышцы, на которые приходится нагрузка. Упражнения, выполняемые в медленном темпе, исключают выполнение упражнения за счет инерционности.

1.2.8. Методы контроля за нагрузкой во время тренировки по

атлетической гимнастики

По частоте пульса можно судить не только об объеме нагрузки, но и о других более тонких изменениях, происходящих в организме. Ведь иногда человеку достаточно представить какое – либо физической действие, как его пульс учащается. Частота пульса и физические упражнения взаимосвязаны между собой, поэтому при определении продолжительности перерыва между отдельными сериями следует исходить из показателей частоты пульса. В зависимости от того, какова ваша физическая подготовка, насколько трудным было ваше упражнение, пульс после окончания серии может быть равен 160 – 170 уд./минуту, что в два с лишним раза больше, когда частота пульса еще не достигла 80 – 90 уд./минуту. Этим методом можно определить продолжительность отдыха между отдельными подходами, который обычно составляет 1 – 3 минуты. Боле длительные перерывы за исключением перерывов после выполнения более трудных упражнений (приседания, например), не целесообразны (5).

На практике лучше всего определять продолжительность отдыха между сериями так, чтобы при выполнении одной и той же серии со снарядом работало сразу трое атлетов. В этом случае можно точно установить оптимальную продолжительность перерыва и наиболее рациональный выбор нагрузки.

На длительность отдыха оказывают влияние многие факторы, одним из которых является цель тренировки. Если занимающийся ставит своей целью, развитие силы и мышечной массы, продолжительность отдыха в данном случае больше, нежели у того, кто хочет похудеть, избавиться от лишнего веса.

Некоторые упражнения (приседания, жимы лежа и др.) из – за сложности требуют более длительных перерывов, чем обычно (около 5 минут). По мере повышения тренированности пульс у занимающихся будет приходить в н7орму гораздо быстрее, в связи с чем перерывы между сериями можно сократить.


1.2.9. Расслабление во время тренировки

Достаточно выполнить несколько подходов для выполнения одного упражнения для определенной группы мышц, чтобы стало ясно, что мускулатура, на которую приходилась нагрузка, освежилась большим притоком крови, вены набухли, увеличились в объеме, мышцы гипертрофировались, отвердели. Иногда такие ощущения весьма приятны, ибо, как говорится, вы чувствуете «себя самого». Например, после выполнения упражнений на развитие бицепса и трицепса последние могут увеличиваться в объеме на 2 – 2,5 см. эта гипертрофия по своей длительности кратковременна. Спустя некоторое время она начинает исчезать, сойдя совсем на нет, но по мере того как мышца перестает работать: в результате мускул  приобретает свой размер и эластичность. После каждой серии необходимо сокращенное расслабление, иначе через несколько месяцев исчезнет упругость мышц и возникнет мышечное отвердение (9).

Поэтому совершенно необходимо, чтобы перерывы между отдельными подходами были использованы для активного расслабления тех мышечных групп, на которые приходилась нагрузка. Достичь этого можно несколькими способами:

-     упражнения на расслабление или на растягивание;

-     коротким массажем или самомассажем (похлопывание, вибрирование);

-     пассивным отдыхом.

К системе расслабления можно отнести чередование интенсивности занятий. На практике часто используют так называемую неделю отдыха:

·     в последнюю неделю месяца уменьшить объем тренировки наполовину, посвятить какой – либо иной спортивной деятельности;

·     после двух трех месяцев тренировок в неделю заниматься, каким – либо видом спорта, прекратив тренировки по культуризму.

Благодаря такому методу будут восстановлены не только физические, но и моральные силы занимающегося, а это вызовет желание снова отдавать себя напряженным тренировкам по культуризму.

1.2.10. Заключительная часть занятий атлетической гимнастикой

Тренировку нельзя считать законченной, если убрать снаряды и инвентарь, а спортивный зал привести в порядок. Так же, как разминка обязательна в начале тренировки, заключительная часть важна в конце. После выполнения последней серии нужно не забыть сделать несколько упражнений на расслабление или потягивание (кругообразные движения руками перед телом и в стороны, поднимание ног вперед и назад, глубокие наклоны туловища вперед с пружинящими движениями тела), которые важны для растягивания мышц и сохранения амплитуды движения в отдельных суставах. Неплохо было бы поплавать или пробежаться по лесу. Если же такой возможности у вас нет, тренировку следует закончить легкой «трусцой» с переходом на ходьбу. После этого на 5 – 10 минут прилечь отдохнуть, расслабив мышцы, а потом принять сильный душ. Душ должен освежать, а не утомлять, поэтому вполне хвать нескольких минут. Стоя под душем, не забыть про самомассаж тела и выполнить несколько упражнений на расслабление (16).

С самого начала все, кто занимается силовыми упражнениями, должны уяснить себе самое важное правило: отдыхать необходимо до полного восстановления. Один свободный день нужен для регенерации мускулатуры, особенно это относится к начинающим, для которых весьма важно восстановить работоспособность, чтобы адаптироваться в нагрузкам. Следовательно, новичкам не следует тренироваться больше 3 – 4 дней в неделю.

1.2.11. Тренировочные программы на увеличение объёма грудной клетки

Широкая и выпуклая грудная клетка всегда являлась неотъемлемой чертой классного атлета. Развитые мышцы спины и груди в сочетании с развитой грудной клеткой вызывали восхищение. "Как добиться увеличения объема грудной клетки?" Этот вопрос, конечно же, актуален и для опытных атлетов, но в наибольшей степени - для новичков.

В настоящее время тренировочные программы, стимулирующие увеличение объёма грудной клетки оказываются без должного внимания, хотя их значение трудно переоценить. Например, вместе с расширением грудной клетки увеличивается длина крепящихся к ней мышц за счет удлинения брюшка, что увеличивает потенциал роста их объема. Также увеличиваются дыхательные объемы (2).

Ранее публиковалась немало методик для увеличения объема грудной клетки, которые на наш взгляд, имели между собой много общего, в частности очень важным элементом этих программ являлась дыхание, а единственной целью использования данных методик - пластический эффект.

Программа Д. Уайдера.

Стоя прямо со штангой на плечах, сделать полный вдох и полный выдох. Затем ещё 3 таких же полных вдоха и только 2 выдоха. Вдохнув последний, третий раз, задержать дыхание и присесть. Выпрямившись, выдохнуть. В ходе первых 10 повторений делать по три глубоких энергичных выдоха и вдоха. В ходе еще 10 повторений — по четыре вдоха и выдоха. На последние пять повторений должны прийтись по пять вдохов и выдохов. Вес штан­ги не должен превышать веса тела. Далее, не давая себе отды­шаться, лечь спиной на горизон­тальную скамью и делать пулловеры. Вес штанги должен быть небольшим - примерно 15-20 кг. Сделать глубокий вдох и опус­тить штангу по широкой дуге за голову как можно ниже. Задер­жав дыхание, вернуть штангу в исходное положение и сделать выдох. Повторить движение нужно 25 раз. (11).

Новичкам рекомендуется выполнять две суперсерии, паузы между сериями 3-4 минуты.

Метод Мак-Каллума.

Рассматриваемый метод имеет много общего с программой Д. Уайдера. Основные отличия тренировки по данному методу заключаются в том, что суперсерии "приседание - пулловер" выполняют в конце занятия, а не в начале, как пред­лагает Джо Уайдер. Тренировочная программа по Мак-Каллуму включает в себя 4 упражнения на мышцы туловища. Закончив их выполнение, предлагается в течение нескольких минут про­вести "вентиляцию легких", за­тем лечь и расслабиться. После этого идет следующая часть программы, состоящая из четы­рех суперсерий "приседания - пулловер". Приседания включа­ют 15 подъемов, пулловер - 20. При выполнении приседаний вес штанги в каждой последую­щей суперсерии увеличивается на 5-10%. Пулловер выполняется с постоянным отягощением. Отдых между суперсериями составляет 3-5 минут (8).

Программа Д. Гримека.

Включает приседания, пулловер и разведения гантелей лежа. Как и в ва­рианте Д. Уадера предлагается выполнять данные упражнения в начале тренировки. Осо­бенность программы заключается в том, что во всех суперсериях первое упражнение — приседания, а второе меняется через суперсе­рию — пулловер и разведения. Вес штанги в приседаниях от подхода к подходу увеличивается от легкого до почти максимального, что приводит к снижению количества повторений от 15 до 1. В пулловере и разведениях вес отягощения увеличивается в меньших пределах. Количество повторений снижается от 15 до 10.(16)

Программы Гримека и Мак-Каллума предназначены для подго­товленных атлетов, их рекомендуется использовать не более трех раз в неделю на протяжении 2-4 месяцев. Авторы, которые предста­вили эти программы, не рекомендуют их начинающим спортсме­нам (12).

       Программа П. Бачинского.

Предназначена для начинающих спортсменов. В ней предлагает­ся «расширять» грудную клетку без применения отягощений. Она со­стоит из отжиманий (на стульях или между ними) в четырех подходах по 10 раз в каждом. После этого следует комбинация для ног и груди. Сначала выполняют глубокие приседания на носках (руки на поясе). Каждая серия таких приседаний чередуется со специальным упраж­нением для грудной клетки — «честстреч». Заканчивается программа подтягиваниями на перекладине (4х8-10) и приседаниями на одной ноге (по 4х8-10 для каждой ноги) (21).


ГЛАВА 2. ЗАДАЧИ, МЕТОДЫ, ОРГАНИЗАЦИЯ, ИССЛЕДОВАНИЯ

2.1. Задачи исследования

Для достижения цели исследования необходимо было решить следующие задачи:

1. Исследовать по данным специальной научно-методической  литературы организационно-методические основы построения тренировочных занятий по атлетической гимнастике.

2. Разработать экспериментальную программу, направленную на расширение грудной клетки занимающихся атлетической гимнастикой.

3. Определить в процессе проведения педагогического эксперимента эффективность разработанной программы, предназначенной для увеличения объёма грудной клетки занимающихся атлетической гимнастикой.

2.2. Методы исследования

Для решения поставленных задач использовались следующие методы исследования:

1. Анализ специальной научно-методической  литературы.

2. Педагогический эксперимент.

3. Методы математической статистики.

4. Методы антропометрических измерений.

1.         Анализ специальной научно-методической  литературы проводился с целью получения объективных сведений по изучаемым вопросам, уточнения методов исследования, выяснения состояния решаемой проблемы. Изучалась литература: об организации и методики занятий атлетической гимнастикой; систем тренировок стимулирующих расширение грудной клетки.

2.         Педагогический эксперимент проводился с целью выявления эффективности разработанной экспериментальной программы, стимулирующей увеличение объёма грудной клетки занимающихся.

3.         Методы математической статистики использовались для обработки результатов эксперимента, при этом определялись:

1. Средняя арифметическая величина.

где  — знак суммирования;

Vполученные в исследовании значения (варианты);

n — число вариант.

2. Среднее квадратическое отклонение:

где  среднее значение;

— значение отдельного варианта.

3. Средняя ошибка среднего арифметического (m):

4. Коэффициент достоверности различий (Р) находился по таблице вероятности — критерия Стьюдента. Различия считались достоверными в случае, если Р меньше или равно 0,05 (В.С. Иванов, 1990).

4. Методы антропометрических измерений использовались для измерения и фиксации физиологических параметров занимающихся (масса тела, объем грудной клетки, жизненная емкость легких).

2.3. Организация исследования

Исследование проводилось на базе школьного тренажёрного комплекса в период с 2003 по 2004 год и состояло из трех этапов.

На первом этапе осуществлялось изучение и анализ специальной научно-методической литературы по исследуемой проблеме. Была подтверждена актуальность темы, поставлена цель и задачи исследования, выдвинута рабочая гипотеза. Определены методы исследования, с помощью которых предполагалось решать поставленные задачи. Была разработана экспериментальная тренировочная программа, стимулирующая увеличение объема грудной клетки занимающихся.

На втором этапе проводился педагогический эксперимент, который был организован на базе школьного тренажёрного комплекса в период с 1.11.2003 по 30.01.2004 года. Участниками эксперимента стали учащиеся старших классов, занимающиеся атлетической гимнастикой второй год, из числа, которых были сформированы методом разделения равных пар экспериментальная и контрольная группы, численностью десять человек каждая. Программа, разработанная нами, была включена в тренировочный процесс экспериментальной группы и выполнялась два раза в неделю, в начале тренировки, при трехразовых занятиях в неделю. Контрольная группа проводила обычные трехразовые тренировки по общепринятой программе.

На третьем этапе проводилась обработка полученных результатов эксперимента с использованием метода математической статистики, последующий их анализ и оформление дипломной работы.


ГЛАВА 3. РЕЗУЛЬТАТЫ ИССЛЕДОВНИЯ И ИХ ОБСУЖДЕНИЕ

3.1. Содержание экспериментальной программы

В связи с актуальностью вопроса о увеличение объёма грудной клетки занимающихся  атлетической гимнастикой и не достаточно высокой эффективностью существующих программ, нами была проделана определенная работа в этом направлении.

В результате анализа существующих программ, стимулирующих увеличение объёма грудной клетки, нами была разработана экспериментальная программа, которая, на наш взгляд, принесет весьма ощутимые результаты, чем существующие программы. В ней, также как и в других программах, представленных нами в дипломной работе, используются приседания со штангой на плечах, пулловер с гантелью и разведения гантелей лежа на скамье. Все упражнения выполняются в среднем темпе с полной амплитудой движения, что способствует увеличению гибкости и подвижности в плечевых суставах и позвоночном столбе.

Приседания со штангой на плечах, являясь базовым упражнением, задействуют в той или иной степени все ске­летные мышцы, что требует большого количества кислорода. Пулловер выполняется лежа поперек горизонтальной ска­мьи, что обеспечивает наилучшую растяжку грудных и проработку зубчатых мышц для стимуляции глубокого дыхания и, вместе с тем, для увеличения подвижности в области грудных позвонков и формирования правильной осанки. Разведения гантелей лежа выполняются на горизонтальной или наклонной скамье, отлично прорабатывают грудные мышцы, сти­мулируют глубокое дыхание и увеличивают подвижность грудинно-реберных суставов. На начальном этапе рекомендуется выполнять приседания и пулловер в суперсете. По мере роста тренированности в программу включаются разведе­ния, и все три упражнения выполняются в трисете.

Приседания:

И. п. (исходное положение) — стоя со штангой на плечах.

Глубокий вдох — 5 приседаний — полный выдох

Глубокий вдох — 4 приседания — полный выдох

Глубокий вдох — 4 приседания — полный выдох

Глубокий вдох — 3 приседания — полный выдох

Глубокий вдох — 3 приседания — полный выдох

Глубокий вдох — 3 приседания — полный выдох

Глубокий вдох — 2 приседания — полный выдох

Глубокий вдох — 2 приседания — полный выдох

Глубокий вдох — 2 приседания — полный выдох

Глубокий вдох — 2 приседания — полный выдох

Глубокий вдох — 1 приседание — полный выдох

Глубокий вдох — 1 приседание — полный выдох

Глубокий вдох — 1 приседание — полный выдох

Глубокий вдох — 1 приседание — полный выдох

Глубокий вдох — 1 приседание — полный выдох

Пулловер

Чередование глубоких вдохов и полных выдохов происходит после каждого повторения при вертикальном положении рук. В каждом подходе выполняется по 35 повторений. Через 5-7 тренировочных занятий, когда организм адаптируется к данному виду нагрузки, пред­лагается усложнить программу за счет изменения частоты дыхания.

Приседания

И. п. — стоя со штангой на плечах.

Глубокий вдох — 6 приседаний — полный выдох

Глубокий вдох — 5 приседаний — полный выдох

Глубокий вдох — 5 приседаний — полный выдох

Глубокий вдох — 4 приседания — полный выдох

Глубокий вдох — 4 приседания — полный выдох

Глубокий вдох — 4 приседания — полный выдох

Пулловер и разведения

Полный выдох и глубокий вдох выполняются после каждого второ­го повторения. Количество повторений в подходе — 30. Время отдыха между трисетами — не более 3 минут. В процессе выполнения трисетов частота дыхания искусственно сокращена, кислородный долг по­крывается очень незначительно, что приводит к увеличению глубины дыхания. Как следствие, активизируются дыхательные мышцы.

В процессе тренировки не увеличивалось число под­ходов более шести.

Вес отягощения не должен мешать совершению глубокого вдоха и полной амплитуде движения.

3.2. Результаты исследования

Через  три месяца, при подведении итогов, у занимающихся из экспериментальной группы было обнаружено, что объем грудной клетки у них в среднем, увеличился на 6,5 см, а ЖЕЛ -  на 0,7 л. Масса тела возросла в среднем на 1,8 кг.

В контрольной группе после эксперимента средний прирост объема грудной клетки составил 1,8 см при нулевом приросте ЖЕЛ. Это говорит о том, что прирост объема грудной клетки произошёл главным образом за счет набора мышечной массы занимающихся, средний показатель которой составил 0,7 кг. Следовательно, экспериментальная программа дает достаточно высокий пластический эффект увеличения объема грудной клетки именно за счет ее расширения. О чем свидетельствует прирост ЖЕЛ (приложение 1).

Д.Уайдер, описывая свою методику тренировки, прогнозирует, что существенный результат появится не раньше, чем через полгода тяжелейшей работы (11). Он также приводит пример, когда юноши, взявшись за особые тренировки, способствующие увеличению объёма грудной клетки, увеличивали объем груди на 10-15 см. Лучшие же результаты в увеличении объёма грудной клетки среди юношей, занимавшихся по экспериментальной программе и достигнутые за два месяца занятий, составили 8-9 см. (приложение 1).

В то же время по завершению эксперимента ЖЕЛ в экспериментальной группе была отмечена в пределах от 4,6 л до 5,7 л при норме для юношей этого возраста — 3,5 - 4,5 л. Кроме того, был рассчитан жизненный показатель емкости легких по формуле:

Жизненный показатель =

Для сравнения следует отметить, что при норме жизненного показателя для мужчин, равной 65-70 мл/кг, этот показатель участников экспериментальной группы в конце эксперимента составил 68 мл/кг (приложение 1).

В течение эксперимента никаких нежелательных явлений в состоянии здоровья занимавшихся не наблюдалось. Отмечалось хорошее самочувствие в течение времени проведения эксперимента. Таким образом, предлагаемая нами  программа позволяет добиться как увеличения объема грудной клетки, так и набора мышечной массы.


ВЫВОДЫ

1. В результате анализа специальной научно-методической литературы по организационно - методическим основам построения тренировочных занятий атлетической гимнастикой было выявлено, что:

-   структура тренировки по атлетической гимнастике имеет, как и структура урока, три составных части - подготовительную, основную и заключительную, которые имеют высокую степень значимости в тренировочном процессе;

-   методика занятий атлетической гимнастикой имеет свои специфические особенности в отличии от методик занятий другими видами спорта (структура разминки, направленность занятий, характер и темп выполнения упражнений, методы тренировки и т.д.).

2. В разработанной нами экспериментальной программе анаэробная работа сопровождается натуживанием и повышением внутригрудного давления. При ее выполнении повышается мощность буферных систем крови и других тканей, так как организму приходится работать, имея повышенное содержание молочной кислоты. Вместе с тем, следует отметить, что буферные системы крови не могут полностью нейтрализовать кислые продукты обмена веществ, поэтому рН крови сдвигается в кислую сторону. Для того чтобы спортсмен мог выполнять работу в таких условиях, его ткани приспосабливаются к работе при недостатке кислорода и низком рН. Такое приспособление тканей служит одним из главных факторов, обеспечивающих высокую анаэробную производительность. Высокая анаэробная производительность характерна для спортсменов, работа которых длится от нескольких секунд до 7-8 минут (13).

Предлагаемая нами методика предполагает более высокую концентрацию в организме углекислоты, чем в ранее рассмотренных програм­мах. Под влиянием избыточного содержания в крови углекислого газа повышается возбудимость дыхательного центра продолговатого мозга. Нейроны дыхательного центра очень чувствительны к действию угле­кислоты. Создаются предпосылки для увеличения МОД. При выполнении данной работы частота дыхания строго регламентирована, поэтому увеличение МОД может происходить только за счет глубины дыхания, что приводит к увеличению дыхательного объема и повышению работоспособности дыхательных мышц, а это способствует увеличению объема грудной клетки. Увеличение МОД сочетается у тренированных лиц с повышением утилизации кислорода из вдыхаемого воздуха. Увеличение резервных возможностей систем органов дыхания и кровообращения обеспечивает повышение аэробных способностей организма. В начальный период работы по предложенной методике кислородная емкость крови увеличивается за счет повышения утилизации кислорода, затем начинает повышаться уровень гемоглобина.

Разработанная нами программа имеет основные отличия от существующих программ, стимулирующих увеличение объёма грудной клетки:

- работа выполняется при длительной задержке дыхания в состоянии натуживания;

- количество повторений в каждом отдельном упражнении го­раздо выше;

- упражнения выполняются в трисете.

Все это дает преимущество перед существующими методиками:

во-первых, наблюдается более ярко выраженный пластический эффект;

во-вторых, за более короткий срок повышается уровень тренированности за счет более скорого повышения анаэробной и аэробной производительности организма, совершенствования функций сердечно-сосудистой и дыхательной систем, повышения уровня физической работоспособности и др. Это дает возможность использовать программу не только в атлетической гимнастике, но и в других видах спорта.

3. На основании данных, полученных в результате проведенного исследования (приложение 1 и 2), можно утверждать, что разработанная нами программа позволяет добиться увеличение объема грудной клетки, мышечной массы занимающихся и является более эффективной по сравнению с существующими программами на расширение грудной клетки.


ЛИТЕРАТУРА

1. Атлетизм. Выпуск 7. — НПО «Инспорт», МОГИФК. - Рязань. — 1990.

2. Бачинский А. Система специализации // Культуризмом к здоровью, силе,красоте. М. Яблонский и др. - Братислава, «Шпорт», 1969.

3.Воробьев А. Н. Тяжелоатлетический спорт. (Очерки по физиологии и спортивной тренировки) – М.: ФКиС, 1977

4.Воробьев А.Н. Железная игра. - М., «Молодая гвардия», 1980.

5. Воробьев А.Н., Сорокин Ю. К. Анатомия силы. - М : Физкультура и спорт, 1987.

6. Воробьев А.Н., Роман Р.А. Методика тренировки Тяжелая атлетика : Учеб. Для ИФК под ред. А.Н. Воробьева .- М : Физкультура и спорт, -1988.

7. Захаров Е. Н., Карасев А. В., Сафонов А. А. Энциклопедия физической подготовки. – М.: Лептос, 1994.

 8. 3ациорский В.М. Физические качества спортсмена. - М.,: Физкультура и спорт, 1970.

9. Кеннеди Р. Крутой культуризм. – М.: Терра-спорт, 2000.

10. Кеннеди Р. Базовые программы для массивных мышц. – М.: Терра-спорт, 2000.

11. Керони С., Ренпен Э. Формирование тела со свободными отягощениями. – М.: Терра-спорт, 2000.

12. Мазниченко В.Д. Обучение движениям / двигательным действиям / Теория и методика физического воспитания : Учеб. Для ИФК под ред. Л.П. Матвеева и А.Д. Новикова. Т.1. - М.: Физкультура и спорт, 1976.

13. Ментцер М. Супер тренинг. — М., Медио спорт, 1998.

14. Платонов В.Н. Нагрузка, утомление, восстановление и адаптация в спортивной тренировке / Теория спорта. Под ред. В.Н. Платонова /. -Киев : Вища школа, 1987.

15. Плеханов В. Н. Возьми в спутники силу. – М.: ФиС, 1998.

16. Стюарт М. Р. Думай. Бодибилдинг без стероидов! – М.: Уайдер спорт, 1997.

17. Тенно Г.П. Сорокин Ю.К. Атлетизм. - М., «Молодая гвардия», 1968.

18. Уайдер Д. Так тренитуются звезды - М.: Уайдер спорт. - 1994.

19. Уайдер Д. Бодибилдинг фундаментальный курс. – М.: Уайдер спорт - СУ, 1993.

20. Физио­логия человека / Под ред. Васильевой В.В. — М., Ф и С. — 1984.

21. Фредерик К. Х. Всестороннее руководство по развитию силы. Красноярск, 1992.

22. Хартманн Ю., Тюннеманн X. Отбор упражнений / Современная силовая тренировка. -Берлин; «Шпорт - ферлаг» ,1989.

23. Шапошников Ю. В. Хочу стать сильным. – М.: Русская книга, 1992.

24. Шестопалов С. Физические упражнения. — Ростов-на-Дону, "Проф-Пресс", 2000.

25. Шестопалов С. Физические упражнения. — Ростов-на-Дону, "Проф-Пресс", 2001.

26. Юшкевич Т.П., Васюк В.Е.,Буланов В.А. Применение технических средств в обучении и тренировке спортсменов. -Минск : «Полымя» , 1987.


Приложение 1.

Антропометрические показатели спортсменов экспериментальной группы до и после эксперимента
П/№ Ф.И.О. Масса тела, (кг) Объем грудной клетки, (см) ЖЕЛ, (л) Жизненный показатель, (мл/кг)
до после прирост до после прирост до после
1 Тимофеев А. В. 82,5 84 1,5 98 105 7 4,6 5,5 65,5
2 Саблин Е. А. 84,6 86,6 2 99 104 5 3,5 4,2 68,1
3 Петухов Д. С. 68,3 70,5 2,2 92 100 8 4,1 4,8 68
4 Макаров В. В. 90 91,5 1,5 100 107 7 4,9 5,6 65,3
5 Безуглов С. С. 68,8 71 2,2 90 96 6 4,5 5,2 73,4
6 Плескачев А. С. 81,7 83 1,3 97 101 4 4 4,9 60,1
7 Зиборов Г. Г. 75 76,8 1,8 98 105 7 4,1 4,7 61,5
8 Свазулов С. В. 71,2 73,5 2,3 96 100 4 5 5,8 79
9 Подкопаев С. А. 82,5 84 1,5 100 108 8 4,9 5,4 64,2
10 Лавренко Е. А. 75 76,5 1,5 95 104 9 5,1 5,7 75
М±m 77,96±1,9 79,74±2,1 1,8±0,2 96,5±1,02 103±1,2 6,5±0,18 4,47±1,16 5,18±0,16 68
                 Р >0,05 <0,01 <0,01

Приложение 2.

Антропометрические показатели спортсменов контрольной группы до и после эксперимента

П/№ Ф.И.О. Масса тела, (кг) Объем грудной клетки, (см) ЖЕЛ, (л) Жизненный показатель, (мл/кг)
до после прирост до после прирост до после
1 Гришаев А.В. 81,5 82,4 0,9 97 99 2 4,5 4,5 54,6
2 Иванов А.В. 67 68 1 99 101 2 3,6 3,6 52,9
3 Ищенко К.В. 84 84,7 0,7 90 91 1 4,0 4,0 47,2
4 Малашихин Е.В. 89 90,2 1,2 98 100 2 4,8 4,8 53,2
5 Пелипенко С.А. 69 70 1 93 95 2 4,3 4,3 61,4
6 Покатилов Ю.А. 83 83,8 0,8 95 96 1 4,1 4,1 48,9
7 Резниченко А.В. 74 74,5 0,5 97 100 3 4,2 4,2 56,3
8 Саслин С.В. 72 73,1 1,1 98 100 2 4,8 4,8 65,6
9 Лысиков В.В. 82 83 1 95 96 1 5,0 5,0 60,9
10 Лавров Е. А. 74,5 76 1,5 100 102 2 4,7 4,7 61,8
М±m 77,7±2,26 78,5±2,28 0,8±0.02 96.5±1.02 98±1,13 1,8±0,43 4,4±0,14 4,4±0,14 56,2
                 Р >0.05 <0.01 <0.01

мвмв

Наш опрос
Как Вы оцениваете работу нашего сайта?
Отлично
Не помог
Реклама
 
Авторское мнение может не совпадать с мнением редакции портала
Перепечатка материалов без ссылки на наш сайт запрещена