Учебное пособие: Четырехполюсники, электрические фильтры
(государственный технический университет)
Кафедра РЭВС
РАЛДЫГИН И.К.
«Основы теории цепей». Часть 2.
Четырехполюсники, электрические фильтры.
Учебное пособие для студентов радиотехнической специальности.
|
Во второй части конспекта по Основам теории цепей (ОТЦ) кратко изложена теория четырехполюсников (4х-П) и более подробно изложена теория электрических фильтров.
Анализ и синтез простейших электрических фильтров проводится с применением прикладной программы Mathcad 2000 (МС). Все расчеты, выполненные в среде Mathcad, проверены путем электронного моделирования по программе Electronics Workbench. Конспект, с его многочисленными примерами, может быть использован студентами при проектировании электрических фильтров на этапах разработки курсовых и дипломных проектов.
Работа написана на основе 4-х-летнего опыта применения упомянутых программ в учебном процессе.
Глава 1. Четырехполюсники
1.1 Основные определения и классификация четырехполюсников (4х-П)
Часть электрической цепи, рассматриваемая по отношению к любым двум парам ее зажимов, называется 4х-П, Рис.1.1.
1
1’
Рис.1.1. Схема 4х-П. Его токи и напряжения.
Понятием 4х-П пользуются тогда, когда интересуются токами и напряжениями на входе «1-1’» и на выходе «2-2’».
В качестве 4х-П могут быть представлены: трансформатор, выпрямитель, электрический фильтр и другие устройства с двумя парами зажимов.
Четырехполюсники делятся на активные и пассивные. В составе активных 4х-П имеются источники энергии. Пассивные 4х-П не содержат источников энергии.
Четырехполюсники делятся на линейные и нелинейные. Если в состав 4х-П входит хотя бы один нелинейный элемент, то такой4х-П называется нелинейным. В данной работе рассматриваются только линейные 4х-П.
По схеме внутренних соединений различают Г-образные, Т-образные, П-образные и другие 4х-П, Рис.1.2.
Рис.1.2. Электрические схемы 4х-П.
Основной смысл теории 4х-П заключается в том, что, пользуясь некоторыми обобщенными параметрами, можно находить ток и напряжение на выходе 4х-П, не производя расчетов токов и напряжений внутри заданной схемы.
1.2 Системы уравнений четырехполюсников
Уравнениями 4х-П называют комплексные уравнения, связывающие комплексные действующие значения токов и напряжений на его входе и выходе.
Линейный пассивный 4х-П, естественно, описывается линейными уравнениями.
Из четырех величин
характеризующих 4х-П, две
должны быть заданы, а две другие определяются из уравнения 4х-П. Всего, таким
образом, может быть составлено шесть форм записи уравнений.
Если 4х-П выполняет роль передаточного звена между источником и приемником электрической энергии, то обычно пользуются уравнениями в форме А:
|
В этих уравнениях А11, А12, А21, А22 называются коэффициентами формы А. Они, в общем случае, являются комплексными числами, модули которых зависят от частоты.
Физический смысл коэффициентов формы А можно пояснить, если мысленно выполнить опыты холостого хода и короткого замыкания.
В режиме
холостого хода
. Уравнение
(1.1.) принимает следующий вид:
Отсюда получаем:
![]()
- отношение входного напряжения к выходному в режиме холостого хода;
![]()
- передаточная проводимость в режиме холостого хода.
В режиме короткого
замыкания
. Уравнения (1.1) принимают
вид:
![]()
Отсюда получаем:
- передаточное сопротивление в режиме короткого замыкания;
![]()
- отношение тока на входе к току на выходе в режиме короткого замыкания.
|
![]()
Из этого уравнения следует, что для составления системы (1.1) в форме А необходимо и достаточно определить только любые три коэффициента. Четвертый коэффициент определяется из (1.2).
Рассмотрим Г-образный 4х-П, изображенный на Рис.1.3, и определим для него коэффициенты формы А.
1 2
|
1’ 2’
Рис.1.3. Схема Г-образного 4х-П.
При определении коэффициентов формы А будем считать, что комплексные сопротивления Z1 и Z2 заданы.
Проведем опыт холостого
хода: зажимы 2-2’ - разомкнуты, ![]()
В этом случае ток на входе и напряжение на выходе определяются по закону Ома в комплексной форме:
![]()
Эти
выражения можно записать так:
Отсюда получаем значения А11 и А21, выраженные через сопротивления Z1 и Z2:
![]()
Теперь проведем опыт
короткого замыкания: зажимы 2-2’ закорочены, ![]()
При этом в цепи осталось только одно сопротивление Z1 и, следовательно:
![]()
Таким образом, коэффициенты формы А Г-образного 4х-П можно представить в виде следующей матрицы
|
Аналогичным образом можно получить матрицу коэффициентов формы А для Т-образного4х-П:

|
Кроме формы А (1,1) существуют еще пять форм записи уравнений 4х-П. Приведем еще две формы.
Форма Z.

Форма Y.

Полный перечень форм записи уравнений 4х-П приводится в учебниках, задачниках и справочниках по ОТЦ.
Если известны коэффициенты хотя бы одной формы записи уравнений 4х-П, то можно найти коэффициенты любой другой формы, решив систему уравнений, например (1,1) относительно искомых токов или напряжений.
1.3 Входное сопротивление, сопротивления холостого хода и короткого замыкания
Рассмотрим произвольный 4х-П с известными коэффициентами формы А, который нагружен активным сопротивлением R, Рис.1.4.
1
R
1’
Рис.1.4. Схема 4х-П, нагруженного активным сопротивлением R
Определим входное сопротивление 4х-П Рис.1.4., т.е. сопротивление со стороны зажимов 1-1’.
По закону Ома в комплексной форме входное сопротивление есть отношение входного напряжения к входному току (1.1):
![]()
|
Полученное выражение входного сопротивления показывает, что 4х-П может быть применен для преобразования сопротивления между источником и приемником.
Сопротивление холостого
хода 4х-П представляет собой частный случай входного сопротивления (1.5) при ![]()

Сопротивление короткого
замыкания получается из (1.5) при ![]()
![]()
1.4 Передаточная функция четырехполюсника
При проектировании радиотехнических устройств широко применяются электрические фильтры, которые удобно рассматривать как 4х-П, предназначенные для передачи сигналов от входа к выходу с определенной избирательностью.
Передаточной функцией по напряжению называется отношение выходного напряжения к входному:
![]()
Модуль этого отношения представляет собой амплитудно-частотную характеристику (АЧХ), а аргумент – фазо-частотную характеристику (ФЧХ). Эти характеристики являются основными при выборе электрических фильтров.
Амплитудно-частотная характеристика показывает, во сколько раз выходное напряжение меньше (или больше) входного, ФЧХ дает сдвиг фаз между входным и выходным напряжениями.
Определим АЧХ и ФЧХ произвольного 4х-П с известными коэффициентами формы А, нагруженного активным сопротивлением R, Рис.1.4. С этой целью запишем первое уравнение системы (1.1) в следующем виде:
|
Поскольку коэффициенты формы А, в общем случае, являются комплексными числами, зависящими от частоты, постольку выражение в скобках (1.6) можно записать в алгебраической форме:
![]()
где а(ω) – действительная часть;
b(ω) – мнимая часть.
После этого связь входного и выходного напряжений (1.6) можно выразить следующим образом:
|
![]()
Для определения ФЧХ 4х-П
за начало отсчета сдвига фаз между входным и выходным напряжениями примем
вектор выходного напряжения
,
который направим по оси абсцисс, т.е. горизонтально.
При таком выборе начала
отсчета положение вектора
на
комплексной плоскости целиком определяется величинами а(ω)и b(ω) и их знаками:
|
Расчет ФЧХ по (1.8) дает сдвиг фаз, выраженный в радианах. Ключ для определения этого угла показан на Рис.1.5:
j
![]()
φ
0 +
![]()
-j
Рис.1.5. Ключ для определения сдвига фаз между входным и выходным напряжениями
На основании (1.7) комплексная передаточная функция по напряжению произвольного 4х-П с известными коэффициентами формы А и нагруженного активным сопротивлением R, принимает вид:
![]()
|
Модуль передаточной функции 4х-П, т.е. его АЧХ:
|
Таким образом, по формулам (1.8) и (1.10) можно рассчитать АЧХ и ФЧХ любого 4х-П при известных коэффициентах формы А и нагрузке R.
Пример 1.1. Задана электрическая схема Г-образного 4х-П (Рис.1.6) и его параметры R, L, C. Данный 4х-П подключен к источнику синусоидального напряжения. Необходимо найти формулы для расчета АЧХ и ФЧХ этого 4х-П.
L

![]()
1 2
Z1
Z2 C R
1’ 2’
Рис.1.6. Электрическая схема г-образного 4х-П, нагруженного активным сопротивлением R
Решение. Комплексные сопротивления плеч 4х-П:
![]()
Коэффициенты формы А (1.3):
![]()
Комплексная передаточная функция:

Модуль передаточной функции:
|
где ![]()
Фазо-частотная характеристика

|
Таким образом, при известных значениях R, L, C-элементов по формулам (1.11), (1.12) можно рассчитать и построить графики АЧХ и ФЧХ Г-образного 4х-П, изображенного на Рис.1.6.
1.5 Каскадное соединение четырехполюсников
Рассмотрим так называемое каскадное соединение 4х-П (Рис.1.7), при котором входные зажимы каждого последующего 4х-П присоединяются к выходным зажимам предыдущего.

Рис.1.7. Каскадное соединение 4х-П
Эти два 4х-П, взятые вместе, можно рассматривать как один эквивалентный.
Определим параметры эквивалентного 4х-П через известные параметры первого и второго четырехполюсников.
Пусть заданы матрицы коэффициентов формы А двух каскадно соединенных 4х-П.
Из теории известно, что матрица коэффициентов формы А двух каскадно соединенных 4х-П равна произведению матриц отдельных 4х-П:

Это правило, распространяется на случай каскадного соединения любого числа 4х-П. При этом матрицы, подлежащие перемножению, записываются в порядке следования 4х-П, т.к. умножение матриц не подчиняется переместительному закону.
1.6 Одноэлементые четырехполюсники
Простейшими 4х-П являются одноэлементные 4х-П, состоящие из последовательного (Рис.1.8а) и параллельного (Рис.1.8б) двухполюсника.

Z1 Z2
а) б)
Рис.1.8. Одноэлементный 4х-П
Матрицы коэффициентов формы А одноэлементных 4х-П:

С помощью этих матриц М1 и М2 можно получить коэффициенты формы А любого 4х-П, построенного по лестничной схеме. Для этого необходимо перемножить матрицы М1 и М2 столько раз, сколько раз встречаются параллельный и последовательный 2х-П.
Например, коэффициенты формы А Г-образного 4х-П получаются после перемножения матриц М1 и М2 (см.1.3):

Глава 2. Электрические фильтры нижних частот
2.1 Основные определения и классификация электрических фильтров
Электрическим фильтром называется устройство, при помощи которого электрические колебания разных частот отделяются друг от друга. Электрический фильтр представляет собой пассивный 4х-П, пропускающий сигналы в некоторой полосе частот с малым затуханием, а за пределами этой полосы сигналы проходят в нагрузку с большим затуханием.
Полоса
частот, в пределах которой передаточная функция по напряжению (1.10) принимает
не менее заданного значения
называется полосой пропускания. Остальная область частот называется полосой задерживания. Частоты, разделяющие эти полосы, называются граничными.
В зависимости от пропускаемого спектра частот фильтры разделяются на:
l фильтры нижних частот (ФНЧ);
l фильтры верхних частот (ФВЧ);
l полосовые фильтры (ПФ);
l заграждающие фильтры (ЗФ).
В зависимости от электрической схемы фильтры разделяются на Г-образные, Т-образные, П-образные и другие.
В зависимости от числа реактивных элементов, входящих в состав фильтра, различают фильтры первого порядка, второго порядка и т.д.
По составу элементов фильтры делятся на активные и пассивные. Активные фильтры содержат источники электрической энергии, а пассивные их не содержат.
По способу обработки сигналов фильтры делятся на аналоговые и цифровые.
В данном курсе рассматриваются только пассивные электрические фильтры, построенные на идеальных линейных R, L, C-элементах.
2.2 Общий принцип действия линейных пассивных электрических фильтров
Рассмотрим электрический фильтр, частотные характеристики которого известны и описываются формулами (1.8)и (1.10).
Пусть на вход данного фильтра поступает сигнал в виде суммы различных частот
![]()
Определим структуру сигнала на выходе фильтра.
В силу линейности фильтра, сигнал на выходе будет также представлять сумму синусоидальных напряжений. При этом изменятся амплитуды и начальные фазы составляющих, а частоты составляющих на выходе фильтра одинаковы:
![]()
Амплитуды составляющих на выходе определяются передаточной функцией фильтра (1.10):
![]()
Сдвиг фаз между входным и выходным напряжениями определяется фазо-частотной характеристикой фильтра (1.8):
![]()
В дальнейшем будем полагать, что на вход фильтра подается синусоидальное напряжение, частота которого изменяется от нуля до бесконечности.
2.3 Общая характеристика фильтров нижних частот
Фильтры нижних частот (ФНЧ) предназначены для пропускания в нагрузку сигналов малой частоты и подавления сигналов большой частоты.
Полоса пропускания ФНЧ определяется его граничными частотами:
f1=0 – нижняя граница полосы пропускания;
f2 - верхняя граница полосы пропускания, которая определяется назначением данного конкретного фильтра.
В теории фильтров рассматриваются идеальные и реальные фильтры. Идеальным ФНЧ называется фильтр, передаточная функция которого (1.10) в полосе пропускания равна единице, а за пределами полосы пропускания она равна нулю:
![]()
Передаточная функция реального фильтра в полосе пропускания не равна единице, а в полосе задерживания - не равна нулю.
Передаточные функции по напряжению идеального и реального фильтров нижних частот показаны на Рис.2.1.
H(f)
![]()

Передаточная функция
идеального ФНЧ
Передаточная функция
реального ФНЧ
H1
Полоса
пропускания Полоса задерживания
![]()
H22
f2 f22
f
Рис.2.1. Передаточные функции идеального и реального фильтров нижних частот
Количественную оценку избирательности фильтра целесообразно производить с помощью коэффициента прямоугольности передаточной функции по напряжению или мощности.
Для расчета коэффициента прямоугольности передаточной функции фильтра введем в рассмотрение передаточную функцию по мощности, которую определим следующим образом.
Максимально возможная мощность, которая может быть выделена в нагрузке в случае идеального фильтра, определяется по формуле:
|
где U1 – действующее значение входного напряжения;
R – сопротивление нагрузки.
Фактическая мощность, выделяемая в нагрузке реального фильтра, определяется действующим значением выходного напряжения, которое зависит от частоты входного напряжения:
|
Передаточной функцией по мощности будем называть отношение мощности, выделяемой в нагрузке реального фильтра (2.2) к мощности, выделяемой в нагрузке, идеального фильтра:
|
Таким образом, передаточная функция по мощности есть квадрат передаточной функции по напряжению (2.3).
Отметим, что в известных учебниках по ОТЦ частотные характеристики фильтров оцениваются затуханием, которое выражается в децибелах (дБ):
|
Из этой формулы следует, что фактически производится оценка затухания (ослабления) сигнала по мощности.
Поскольку физический смысл формулы (2.4) спрятан под знаком логарифма, постольку в дальнейшем будем пользоваться более простой формулой (2.3), физический смысл которой более прост и понятен.
Расчет коэффициента прямоугольности передаточной функции по мощности ФНЧ будем производить следующим образом.
Определим частоту, на которой передаточная функция по мощности составляет 5% от максимума:
![]()
За пределами этой частоты будем считать, что передаточная функция равна нулю
![]()
Определим полную площадь под кривой передаточной функции (Рис.2.1):
|
Определим также площадь
под кривой передаточной функции в пределах полосы пропускания (0…f2), где передаточная функция по напряжению
а передаточная функция по
мощности
(Рис.2.1):
|
Коэффициентом прямоугольности передаточной функции по мощности будем называть отношение найденных площадей:
|
По физической сущности коэффициент прямоугольности представляет собой коэффициент полезного использования площади под кривой передаточной функции по мощности и дает представление о степени соответствия реального фильтра идеальному с той же полосой пропускания.
2.4 Емкостной фильтр нижних частот
2.4.1 Частотные характеристики емкостного фильтра нижних частот первого порядка (ФНЧ-1)
Рассмотрим электрическую схему, изображенную на Рис.2.3, которая представляет собой простейший фильтр нижних частот первого порядка (ФНЧ-1).
.
|

|
|
С R
1’ 2’
Рис.2.3. Емкостной фильтр нижних частот (ФНЧ-1)
Работа
ФНЧ-1:
При
![]()
При
На малых частотах емкость
обладает большим сопротивлением и поэтому весь
проходит
только через резисторы r, R, не ответвляясь в емкость.
На больших частотах емкость обладает малым сопротивлением. Она закорачивает нагрузку и поэтому выходное напряжение мало.
Определим для этого фильтра АЧХ и ФЧХ, рассматривая его как Г-образный 4х-П, нагруженный активным сопротивлением R.
Сопротивления плеч фильтра:
![]()
Коэффициенты формы А:
![]()
Уравнение связи входного и выходного напряжений (1.6):
|
где
- эквивалентное сопротивление
при параллельном соединении R и r.
|
![]()
Передаточные функции ФНЧ-1 принимают вид:
|
где
- значение передаточной
функции на частоте ω=0.
Теперь, по формулам (2.9) и (2.10) можно, при известных значениях R, r, C-элементов, рассчитать и построить графики АЧХ и ФЧХ простейшего фильтра нижних частот (ФНЧ-1).
При изучении частотных характеристик фильтров удобно пользоваться АЧХ ФЧХ в параметрической форме. Для этого необходимо ввести в рассмотрение приведенную, или так называемую нормированную частоту, которая, в данном случае, определяется по формуле
|
где
- граничная частота, на
которой реактивное сопротивление емкости равно активному сопротивлению ![]()
Запишем (2.9) и (2.10) в параметрической форме:
|
|
Параметрические функции (2.11) и (2.12) позволяют проводить общий анализ АЧХ и ФЧХ фильтра при заданных значениях R, r-элементах и произвольном значении емкости С.
Пример 2. Рассчитать и построить графики
при следующих исходных
данных:
R=100 Ом – сопротивление нагрузки;
r=5 Ом – внутреннее сопротивление источника.
Оценить коэффициент прямоугольности передаточной функции по мощности.
Результаты расчетов представлены на Рис.2.4 и Рис.2.5.
Из этих рисунков видно, что передаточная функция по мощности при частоте ν=0 принимает значение H(0)=0,98, а затем плавно уменьшается с увеличением частоты. Коэффициент прямоугольности этой функции составляет всего П=0,545. Это означает, что данный фильтр соответствует идеальному фильтру на 54,5%.
Сдвиг фаз между входным и выходным напряжениями изменяется от 0 до 900. При этом выходное напряжение опережает входное.

2.4.2 Синтез емкостного фильтра нижних частот первого порядка
Синтез (проектирование) любого технического устройства начинается с разработки технического задания (ТЗ), в котором приводятся исходные данные и формулируются требования к устройству.
Применительно к ФНЧ-1 техническое задание на его проектирование можно изложить следующим образом:
1. Спроектировать емкостной фильтр нижних частот, схема которого приведена на Рис.3.2.
2. На вход фильтра подаются сигналы синусоидальной формы, частота которых изменяется от 0 до ∞.
3. Сопротивление нагрузки R, а внутреннее сопротивление источника r, (R>>r).
4. Передаточная функция по напряжению на нижней границе полосы пропускания (f1=0) должна принимать значение, близкое к единице, а на верхней границе f2 передаточная функция должна принимать значение H(f2)=H1.
5. Определить потребное значение емкости, рассчитать АЧХ и ФЧХ фильтра, оценить коэффициент прямоугольности передаточной функции по мощности.
В условиях данной задачи неизвестной величиной является только емкость, которую достаточно просто можно найти из уравнения передаточной функции. Однако, в интересах общности изложения последующего материала воспользуемся передаточной функцией в параметрической форме (2.14), из которой найдем значение приведенной частоты n2, на которой передаточная функция (2.12) принимает заданное значение H1:
|
Очевидно, что (2.14) имеет смысл только при H1<H0.
Теперь формулу (2.11) можем записать в виде
![]()
откуда находим потребное значение емкости для построения ФНЧ-1 Рис.3.2:
|
Пример 2.2. Спроектировать ФНЧ-1 Рис.2.3 при следующих исходных данных:
R=100 Ом – сопротивление нагрузки;
r=5 Ом – внутреннее сопротивление источника;
f2=1000 Гц – верхняя граница полосы пропускания;
H1=H(f2)=0,707 – значение передаточной функции на верхней границе полосы пропускания;
h1=h(f2)=0,5 - значение передаточной функции по мощности на верхней границе полосы пропускания.
Рассчитать АЧХ и ФЧХ фильтра, оценить коэффициент прямоугольности передаточной функции по мощности.
Результаты расчетов представлены на Рис.2.6 и Рис.2.7.
Из этих рисунков видно, что на верхней границе полосы пропускания f2=1000 Гц передаточная функция по мощности h(f2)=0,5, что соответствует требованиям технического задания.
Сдвиг фаз между входным и выходным напряжениями F(f2)=42,071 град. Коэффициент прямоугольности передаточной функции по мощности составляет П=0,545.
Потребное значение емкости для построения ФНЧ-1 Рис.3.2 составляет С=30,17 мкФ.

2.5 Г-образный фильтр нижних частот (ФНЧ-2)
2.5.1 Частотные характеристики ФНЧ-2
В целях повышения коэффициента прямоугольности передаточной функции по мощности применяют фильтры нижних частот второго порядка, в состав которых входят два реактивных элемента: L и C.
Рассмотрим Г-образный ФНЧ, схема которого представлена на Рис.2.8 (см.также Рис.1.6).
L
Z1
Z2 C R
Рис.2.8. Электрическая схема Г-образного ФНЧ
Работа Г-образного ФНЧ:
![]()
при
при
На малых частотах индуктивное сопротивление мало, а емкостное сопротивление велико, поэтому ток проходит в нагрузку с малым ослаблением, не ответвляясь в емкость.
На больших частотах индуктивное сопротивление велико, а емкостное сопротивление мало. Ток, прошедший через индуктивность, закорачивается емкостью. Поэтому выходное напряжение мало.
Определим АЧХ и ФЧХ Г-образного ФНЧ, рассматривая его как Г-образный 4х-П, нагруженный активным сопротивлением R.
Комплексные сопротивления плеч фильтра:
![]()
Коэффициенты формы А:
![]()
Уравнение связи входного и выходного напряжений (1.6) принимает вид:
|
Обозначим, как и ранее, действительную и мнимую части (2.16):
- действительная часть;
- мнимая часть.
Уравнение (2.16) запишем в виде:
|
Фазочастотная характеристика ФНЧ-2 определяется по формуле:
|

Комплексная передаточная функция по напряжению определяется из (2.17):
|
Модули передаточных функций по напряжению и мощности принимают вид:
|
Таким образом, при известных значениях R, L, C-элементов, по формулам (2.18), (2.20) можно рассчитать и построить графики АЧХ и ФЧХ Г-образного ФНЧ.
С целью общего анализа частотных характеристик Г-образного ФНЧ представим передаточные функции (2.20) в параметрической форме, для чего обозначим:
|
После подстановки обозначений в (2.20) получим передаточные функции в параметрической форме:
|

Пример 2.3. Рассчитать и построить семейство кривых передаточной функции по мощности в параметрической форме для трех значений коэффициента нагрузки:
![]()
Определить коэффициент
прямоугольности передаточной функции по мощности при ![]()
Расчет передаточной функции по мощности, выполненный по формуле (2.21) приведен на Рис.2.9.

Из Рис.2.9 следует, что
при Q1=0,8 передаточная функция
достигает
своего максимума, равного 1,86, а затем плавно уменьшается, Этот всплеск
передаточной функции может быть желательным или нежелательным в зависимости от
конкретного назначения фильтра.
При Q2=1 всплеск передаточной функции
значительно меньше и при
он вовсе отсутствует.
Таким образом, характер
изменения передаточной функции
Г-образного
ФНЧ целиком определяется значением коэффициента нагрузки Q, который, в свою очередь, зависит от
комбинации значений RLC-элементов.
Следовательно, путем соответствующего выбора LC-элементов можно изменить форму кривой передаточной функции.
Коэффициент
прямоугольности передаточной функции по мощности при
составляет П=0,807, что
значительно больше, чем у ФНЧ-1.
2.5.2 Синтез Г-образного фильтра нижних частот
Техническое задание на проектирование Г-образного ФНЧ формулируется следующим образом.
1. Спроектировать Г-образный ФНЧ, схема которого представлена на Рис.2.8.
2. На вход фильтра подаются сигналы синусоидальной формы, частота которых изменяется от нуля до бесконечности.
3.
Передаточные
функции по напряжению и мощности в полосе пропускания (0…f2), должны быть максимально плоскими, т.е. не иметь
всплесков, превышающих единицу, и на верхней границе полосы пропускания должны
принимать значения
.
4. Сопротивление нагрузки чисто активное, равное R.
5. Рассчитать потребные значения индуктивности и емкости для построения фильтра. Построить графики АЧХ и ФЧХ, оценить коэффициент прямоугольности передаточной функции по мощности.
Порядок проведения расчетов состоит в следующем.
Из анализа ТЗ и формул
передаточных функций (2.20) следует, что при заданных значениях
необходимо найти два
неизвестных параметра L и C, при которых фильтр будет
удовлетворять требованиям технического задания.
Другими словами, необходимо найти такие значения L, С-элементов, при которых передаточная функция H(w) проходит через точку на плоскости с координатами w2, H1.
Математически это означает, что для определения двух неизвестных необходимо составить два независимых уравнения и решить эту систему относительно L и С.
Для составления первого
уравнения необходимо из семейства кривых Рис.2.9 выбрать кривую, которая
соответствует требованиям ТЗ, и по ней при заданном значении
найти значение приведенной
частоты n2.
В данном случае
требованиям ТЗ удовлетворяет передаточная функция
,
построенная при
.
Точное значение приведенной частоты определяется путем решения уравнения:
|
![]()
Результаты расчетов по
формуле (2.22) при
приведены в таблице
2.1.
Таблица 2.1.
|
H1 |
0.707 | 0.6 | 0.5 | 0.4 | 0.3 | 0.2 | 0.1 |
|
n2 |
1.0 | 1.55 | 1.316 | 1.513 | 1.783 | 2.213 | 3.154 |
Найденная приведенная
частота n2 связана с верхней границей полосы пропускания
и неизвестной резонансной
частотой w0 следующим соотношением:
![]()
Отсюда получаем первое независимое уравнение для определения неизвестных LC-элементов
|
Выбранная кривая
передаточной функции
построена при
.
Следовательно, второе независимое уравнение можно записать в виде:
|
Совместное решение (2.23) и (2.24) дает формулы для определения неизвестных LC-элементов:
|
Теперь по формулам (2.18), (2.20), и (2.25) можно рассчитать потребные значения LC-элементов для построения Г-образного ФНЧ, а также рассчитать и построить графики АЧХ и ФЧХ этого спроектированного фильтра.
Пример 2.4. Спроектировать Г-образный ФНЧ, схема которого представлена на Рис.2.8:
Исходные данные:
R=100 Ом – сопротивление нагрузки;
f2=1000 Гц – верхняя граница полосы пропускания;
H(f2)=0,707 – значение передаточной функции по напряжению на верхней границе полосы пропускания.
Требование к фильтру: передаточные функции по напряжению и мощности в полосе пропускания должны быть максимально плоскими, т.е. не иметь всплесков и провалов.
Решение. Из Рис.2.9. выбираем кривую
, которая удовлетворяет
требованиям технического задания.
Из таблицы 2.1 по заданному значению Н1=Н(f2)=0,707 выбираем соответствующее значение приведенной частоты n2=1.
По формулам (2.25) определяем потребные значения LC-элементов для построения Г-образного ФНЧ.
По формулам (2.18) и (2.20) рассчитываем АЧХ и ФЧХ спроектированного фильтра и оцениваем коэффициент прямоугольности передаточной функции по мощности этого фильтра.
Результаты расчетов приведены на Рис.2.10 и Рис.2.10а.
Из этих результатов
главными являются найденные значения индуктивности и емкости: L=23 мГн и С=1,125 мкФ, при которых передаточные
функции на верхней границе полосы пропускания принимают заданные значения: ![]()
Следовательно, спроектированный Г-образный ФНЧ удовлетворяет требованиям технического задания.
Коэффициент прямоугольности передаточной функции по мощности Г-образного ФНЧ составляет П=0,807.
Отметим, что изложенный порядок проектирования носит общий характер и может применяться в среде Mathcad при любой комбинации исходных данных: H1, f2, R, Q.

2.6 Т-образный фильтр нижних частот
2.6.1 Частотные характеристики Т-образного фильтра нижних частот
В целях дальнейшего повышения коэффициента прямоугольности применяют фильтры третьего порядка, к числу которых относится Т-образный ФНЧ, изображенный на Рис.2.11.
L1 L2
Z1 Z3
Z2 C R
Рис.2.11. Электрическая схема Т-образного ФНЧ
Работа Т-образного ФНЧ

На малых частотах индуктивные сопротивления Z1, Z3 малы, а емкостное сопротивление Z2 велико, поэтому ток проходит в нагрузку с малым ослаблением.
На больших частотах на пути тока в нагрузку стоят два больших сопротивления индуктивностей L1 и L2, а ток, прошедший через L1 закорачивается малым емкостным сопротивлением.
Определим АЧХ и ФЧХ Т-образного ФНЧ, рассматривая его как Т-образный 4х-П, нагруженный активным сопротивлением R.
Комплексные сопротивления плеч фильтра:
![]()
Коэффициенты формы А:

где - коэффициент
асимметрии фильтра, который может быть выбран в пределах ![]()
Уравнение связи входного и выходного напряжений:
|

Фазо-частотная характеристика фильтра определяется по формулам (1.8), а передаточная функция по напряжению рассчитывается по формуле (1.10).
Таким образом, при известных значениях RLC - элементов можно рассчитать и построить графики АЧХ и ФЧХ Т-образного ФНЧ, используя формулы (1.8), (1.10) и (2.26).
Представим, как и ранее для Г-образного ФНЧ, передаточные функции по напряжению и мощности в параметрической форме:
|

Пример
2.5. Рассчитать
и построить семейство кривых передаточной функции по мощности в параметрической
форме (2.27) для трех значений коэффициента нагрузки:
Результаты расчетов представлены на Рис.2.12.
Из Рис.2.12 следует, что
для Т-образного несимметричного ФНЧ оптимальным значением коэффициента нагрузки
следует считать Q2=1,0 при коэффициенте асимметрии
, который был определен в
результате предварительных исследований.
Коэффициент
прямоугольности передаточной функции по мощности Т-образного несимметричного
ФНЧ при Q=1 и
равен
П=0,905.

2.6.2. Синтез Т-образного фильтра нижних частот
Поставим задачу спроектировать Т-образный несимметричный ФНЧ по ТЗ на проектирование Г-образного ФНЧ.
Из Рис.2.11 видно, что в состав Т-образного фильтра входят три неизвестных реактивных элемента: L1, L2 и С, которые необходимо определить.
Следовательно, для определения трех неизвестных необходимо составить три независимых уравнения.
Порядок определения L1 и С аналогичен порядку определения этих элементов для Г-образного ФНЧ.
Из семейства кривых
Рис.2.12 выбираем кривую, которая удовлетворяет требованиям ТЗ. В данном случае
выбираем кривую
которая построена
при Q2=1.
После этого определяем значение приведенной частоты n2, на которой Н(n2)=Н1. Для этого решаем следующее уравнение:
![]()
в результате получим таблицу 2.2.
Таблица 2.2.
|
Н1 |
0,707 | 0,6 | 0,5 | 0,4 | 0,3 | 0,2 | 0,1 |
|
n2 |
1,5036 | 1,615 | 1,730 | 1,867 | 2,049 | 2,327 | 2,890 |
Далее, как и для Г-образного ФНЧ, можем записать два уравнения для определения L1 и С:

Совместное решение этих уравнений дает формулы для определения L1 и С:
|
Значение второй индуктивности L2 определяется из условия выбранного коэффициента асимметрии
|
![]()
Пример 2.6. Спроектировать Т-образный ФНЧ, схема которого показана на Рис.2.11.
Исходные данные:
R=100 Ом – сопротивление нагрузки;
f2=1000 Гц – верхняя граница полосы пропускания;
H1=H(f2)=0,707 – значение передаточной функции по напряжению на верхней границе полосы пропускания.
Передаточные функции H(f) и h(f) в полосе пропускания не должны иметь всплесков и провалов.
Решение. Из таблицы 2.2 по заданному значению H1=H(f2)=0,707 при Q=1 выбираем значение приведенной частоты n2=1,5036.
Потребные значения индуктивностей и емкости определяем по (2.28), (2.29).
Расчет передаточной функции по мощности проведем по формуле (1.10), ФЧХ – по формуле (1.8) с учетом (2.26).
Результаты расчетов представлены на Рис.2.14, Рис.2.14а.
Из этого рисунка видно, что потребные значения индуктивностей и емкости для построения несимметричного Т-образного ФНЧ составляют: L1=24мГн, L2=11 мГн, C=2,389 мкФ.
Передаточные функции на верхней границе полосы пропускания принимают значения: Н(f2)=0,707, h(f2)=0,5, что и требовалось по техническому заданию.
Коэффициент прямоугольности передаточной функции по мощности составляет П=0,905.
